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Abstract 

This dissertation presents a simple design method to predict the safety of rocking multi-block columns. 

As the background of the design method Housner’s refined impact model and a new model for multi-

block columns subjected to earthquakes, which contains an impact and an opening model are presented.  

The reasons of the well-known fact that rocking block experiments show lower energy loss during impact 

than it is predicted by Housner’s impact model is investigated. It is found that a reasonable explanation 

for the difference is that in the original model the best case scenario was assumed: that impact occurs at 

the edges, which results in the maximum energy loss. In reality, due to the unevenness of the surfaces, or 

due to the presence of aggregates between the interfaces, rocking may occur with consecutive impacts, 

which reduces the energy loss. This hypothesis is also verified by experiments. 

The new 2D column model is purely mechanical: assuming rigid blocks and classical (inelastic) impact. 

Both in the impact and in the opening model all the possible opening configurations are investigated, 

since it is shown that in many practical cases unexpected patterns may occur. The effect of energy 

dissipation during impact is investigated. Using the model in accordance with the literature it is found that 

monolithic blocks are more vulnerable to overturning than multi-block systems. 

With the aid of the column model it is shown that an earthquake can be reasonably well represented for 

overturning by two parameters: the peak ground acceleration and the replacement impulse duration. The 

Overturning Acceleration Spectra of rigid blocks is presented for 100 different earthquake records. Based 

on the response of the elements a new parameter, the “replacement impulse duration” is defined, that 

leads to a simple design method to predict the safety of rocking blocks. 
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Chapter 1 Introduction 

Historic masonry and stone buildings are vulnerable to earthquakes. Most of the churches built in 

Hungary in the XII-XIXth centuries contain stone or brick columns, walls and arches. Many of them were 

severely damaged by moderate ground motions. For example, in 1956 the vaults of a baroque church in 

Taksony was collapsed during the Dunaharaszti earthquake, M5.6 (Szeidovitz 1984). In the archive 

photos (Fig. 1) it is clearly visible, that the motion of the arches were so big that the vaults collapsed, 

while the arches themselves became seriously damaged but were not destroyed. This is the reason that in 

the investigation of stone or brick buildings both the stability of the structure and the motions during the 

excitation must be examined. It is also important to note that these structures were not designed for 

earthquakes, however today they must be investigated for the expected seismic event. 

 

Fig. 1 The ruined Szent Anna parish church after the earthquake in Dunaharaszti, 12th Jan. 1956 (Historia 

Domus 1956) 

Static analysis of brick or stone structures are well explored and they are usually based on the thrust line 

analysis (see e.g. the fundamental paper of Heyman (1966)) with the aid of which a pushover analysis can 

also be performed. For earthquake design these methods are inapplicable. To illustrate this, we recall 

Housner's (1963) statement that these structures subjected to earthquakes show a clear size effect (the 

smaller the structure, the more vulnerable for earthquakes) which can not be modelled with the static 

analysis. 

It is well known, that the classical analysis used for the design of regular buildings, such as the Response 

Modal Analysis (RMA) or even the time history analysis of elasto-plastic structures are not directly 

applicable for masonries, where the “rocking” of the blocks (opening and closing with impact) plays an 

important role in the nonlinear response of masonry structures (Makris and Konstantinidis 2003). The 

main reason that RMA is not applicable is that these structures do not have a definite period of vibration, 

since motion occurs by the opening and closing of the cracked interfaces (the elastic deformations are 

negligible) and the length of “period” depends on the opening of the interface. 

As a rule, we may say that there is no generally accepted method to analyze and design these kinds of 

structures. 
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In this thesis we will make three important steps to reach a design methodology: 

- modelling of single (rocking) blocks for earthquakes, 

- modelling of columns consisting of rigid blocks, subjected to earthquakes, 

- develop a design method to evaluate rocking structures. 

The literature summary presented below follows these major steps. 

 

Modelling of single blocks 

Housner (1963) published his classical paper more than five decades ago, in which he presented a simple 

model for the rocking rigid block (Fig. 2). He investigated a block which rotates around corner A, then – 

when the block reaches the vertical position – impact occurs, and the block rotates further around corner 

B. Assuming identical angular momentum about corner B before and after the impact (Fig. 2), he 

determined the angular velocity after impact, ωa (Fig. 2c) as a function of the geometry and the angular 

velocity before impact, ωb (Fig. 2a): 

 𝜔a = 𝜇Hous𝜔b,          𝜇Hous =
2ℎ2 − 𝑏2

2ℎ2 + 2𝑏2
 

(1) 

where ωb and ωa are the angular velocities before and after rocking, h and b are the dimensions of the 

block (Fig. 2a), μ is the angular velocity ratio. 

 

Fig. 2 Housner’s model for a rocking block 

The square of the angular velocity is proportional to the kinetic energy of the rocking block, and hence at 

every impact there is an energy loss. The relative loss in kinetic energy during rocking can be calculated 

as: 

 
𝜂 =

𝜔𝑏
2 − 𝜔𝑎

2

𝜔𝑏
2 = 1 − 𝜇𝐻𝑜𝑢𝑠

2 (2) 

The motion of a rocking block – subjected to gravity load only – according to Housner’s model is shown 

in Fig. 3. Note that both the amplitude and the time between impacts decrease with time. 

The rocking block was investigated experimentally by several researchers: Anooshehpoor and Brune 

(2002) used timber blocks, Prieto-Castrillo (2007) and Ther and Kollár (2017d) granite, Aslam et al. 

(1980) and Ma (2010) concrete, Lipscombe and Pellegrino (1993) used steel elements. In almost every 

case, it was found that in the experiments the energy loss (and the decrease in angular velocity) is smaller 

than the one predicted by Housner’s model (Fig. 3). The results are shown in Table 1 and in Fig. 4.  
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Fig. 3 Typical time- displacement curve of a rocking block according to Housner’s model (dashed line), 

and according to our experiment (solid line). 

In case of the experiments of Elgawady et al. (2011) rocking did not occur freely but through a steel 

mechanism, which was applied on the system. This is the reason that this experiment was not included in 

Fig. 4. Aslam et al. (1980) reported high slips (and, accordingly, high energy loss) during the 

experiments, which explains that in this case the energy loss is higher than in case of Housner's model. 

Researchers gave different explanations for the significant differences between the results of the 

experiments and the model (see the summary of Lagomarsino (2015)), and several improvements were 

suggested. Augusti and Sinopoli (1992) and Kounadis (2015) took into account the sliding between the 

block and the base, which, especially for small aspect ratios, is a necessary and important improvement. 

Note, however, that it cannot explain that the model underpredicts the energy loss (Table 1). A possible 

explanation assumes that the impact is neither plastic nor elastic: Lipscombe and Pellegrino (1993) stated 

that the bouncing is significant for short blocks. They insert the coefficient of restitution into Housner’s 

equations to reach an agreement with the experiments, where the bouncing of the element was detected. 

This effect has been experimentally tested by Elgawady et al. (2011), by investigating the material of the 

surface of the base under the rocking element. Ma (2010) ran over 400 experimental tests with a built-in 

steel mechanism that prevents sliding to explain the discrepancy. In conclusion, he stated that the 

experiments have demonstrated that despite the very simple appearance of free rocking motion, highly 

complex interactions play an important role. To overcome the differences between the model and the 

experiments, some of the researchers suggested to use an angular velocity ratio (μ) which agrees with the 

experiment and not with Housner’s model (Priestley et al. 1978; Aslam et al. 1980; Lipscombe and 

Pellegrino 1993; Anooshehpoor and Brune 2002; Elgawady et al. 2011). 
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Fig. 4 The reduction in speed (μ) and the loss of kinetic energy (ηHous=1-μ2
Hous) for different aspect ratios. 

Experimental results (Ogawa 1977; Aslam et al. 1980; Prieto-Castrillo 2007) compared with Housner’s 

model. (Aslam reported significant slips, which explains the high energy loss.) 

Note that in spite of the presented inaccuracies Housner’s model is widely applied because of its 

simplicity and physical clarity. Numerical solutions were developed to follow the motion (Augusti and 

Sinopoli 1992; Lipscombe and Pellegrino 1993; Prieto et al. 2004; Kounadis 2015), and with the aid of 

these, several authors determined overturning curves (see Chapter 5) to analyse the stability of a single 

rocking block (Housner 1963; Yim et al. 1980; Ishiyama 1982; Hogan 1989; Sinopoli 1991; Shi and 

Anooshehpoor 1996; Psycharis et al. 2000; Makris and Konstantinidis 2003; Peña et al. 2006; Peña et al. 

2007; Prieto-Castrillo 2007; Makris and Vassiliou 2012; Voyagaki et al. 2013a; Voyagaki et al. 2013b; 

Vassiliou et al. 2016). Oppenheim (1992) extended this for the investigation of arches and De Lorenzis 

(2007) defined stability maps for impulse-ground motions. Housner’s model was also extended to 

investigate non-symmetric monolith blocks (Shi and Anooshehpoor 1996; Di Egidio and Contento 2009; 

Zulli et al. 2012) and two (Psycharis 1990; Spanos et al. 2001) or multi degree of freedom structures 

(Ther and Kollár 2014; Ther and Kollár 2017b). 

Housner’s model is a very important element of the analysis of structures subjected to earthquakes, where 

cracks may open and close during excitations. These are, for example: columns, walls and arches made of 

masonry, stone or unreinforced concrete blocks (Fig. 5). 

 

Fig. 5 Columns and arches, where Housner’s model is applied 

 

Modelling of columns consisting of rigid blocks 

Masonry and stone columns are important structural elements. Their modelling must include the possible 

openings and closings of the cracks between the blocks, which require the use of an impact model. 
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Single-block columns were first investigated by Housner (1963), who derived a formula for the change in 

velocity of rocking elements.  

The motion of multi-block columns, when the locations of the open interfaces are given, were 

investigated by Prieto-Castrillo (2007), who described a robust method for predicting their motion 

between two consecutive impacts. 

For the impact of multi-block columns only a few mechanical models are available. Housner solved the 

single block, Psycharis (1990) presented a model for the two-block mechanism. His solution is accurate 

when at impact all the elements are vertical, and approximate for inclined elements. This solution was 

generalized by Spanos et al. (2001) for the impact of a two-block inclined system. As far as we know no 

mechanical model of impact is available for columns with more than two blocks. (It might be worthwhile 

to mention that Housner’s model was generalized for arches (Oppenheim 1992; De Lorenzis 2007; 

DeJong et al. 2008; DeJong 2009). The presented four-hinge mechanism is a one degree of freedom 

system.) The opening pattern during impact was investigated by Psycharis (1990) for a two-block system. 

An alternative method to investigate the multi-block system is the discrete element method (DEM) 

(Winkler et al. 1995; Psycharis et al. 2000; Komodromos et al. 2008; DeJong 2009; Tóth et al. 2009; 

Dimitri et al. 2011; Lengyel and Bagi 2015) or other commercially available softwares, where the 

properties of the contact interfaces between the rigid blocks must be defined (Konstantinidis and Makris 

2005). By setting certain parameters they seem to be robust methods for investigation multi-block 

columns. Using the discrete element method it was observed that monolithic blocks are more vulnerable 

to overturning than multi-block systems with the same overall dimensions (Psycharis et al. 2000; Dimitri 

et al. 2011). 

 

Design methodology of rocking mechanisms 

Overturning of rigid blocks on rigid foundations subjected to earthquakes has been investigated by 

several researchers. For the design of overturning of blocks the following approaches were suggested: 

(1) to evaluate a limit (or push over) analysis; 

(2) to apply an equivalent viscous damping model to take into account the impact during rocking; 

(3) to determine a single replacement pulse (Fig. 6) from the earthquake record, and then, 

evaluate the element with the overturning curve (OC) for the pulse; or 

(4) to determine the response of the block for a given earthquake by time history analysis. 

 

Fig. 6 Suggested signal shapes for generating OC (see (Makris and Vassiliou 2012) for signals e and f) 

The limit analysis of rigid blocks, or structures made of rigid blocks (Livesley 1978) subjected to 

horizontal loads is relatively simple. However, it may be very conservative and it does not show the size 

effect for rocking blocks subjected to earthquakes, which was observed and also analytically proven by 

Housner (1963) in his classic paper: larger structures are less vulnerable to overturning than smaller ones.  



  Analysis and design of rocking mechanisms 

Introduction 6 

Priestley et al. (1978) suggested to use equivalent viscous damping to take into account the impact in the 

analysis. Makris and Konstantinidis (2003) criticized this approach and stated that rocking structures 

cannot be replaced by ‘equivalent’ single degree of freedom (SDOF) oscillators. 

Several researchers recommended replacing earthquake records by simple signals (Fig. 6a-c). Housner 

(1963) and Yim et al. (1980) investigated a half sine and a single rectangular pulse, Voyagaki et al. 

(2013b) investigated the effect of a range of idealized single-lobe pulses, while Ishiyama (1982); Augusti 

and Sinopoli (1992); Anooshehpoor et al. (1999); Zhang and Makris (2001); Makris and Vassiliou 

(2012); Dimitrakopoulos and DeJong (2012) and Dimitrakopoulos and Fung (2016) applied full-cycle 

pulses where impact plays an important role (Fig. 6d-f). 

Voyagaki et al. (2013a) suggested using a single-lobe triangular pulse with a duration defined by Baker 

(2007), and it was shown numerically that this pulse gives a conservative solution for the investigated 

earthquakes. There are several recommendations on the calculation of the shape and duration of simple 

signals (Mavroeidis and Papageorgiou 2003; Baker 2007; Vassiliou and Makris 2011; Mimoglou et al. 

2014), see also the literature review of Lagomarsino (2015). 

To evaluate the safety of the elements the overturning curve (acceleration as a function of duration) was 

introduced first by Housner (1963) for a half sine and a single rectangular pulse, then for other shapes by 

other researchers (Yim et al. 1980; Ishiyama 1982; Augusti and Sinopoli 1992; Anooshehpoor et al. 1999; 

Zhang and Makris 2001; Makris and Vassiliou 2012; Dimitrakopoulos and DeJong 2012; Voyagaki et al. 

2013a; Voyagaki et al. 2013b; Dimitrakopoulos and Fung 2016) and harmonic shaking by Spanos and 

Koh (1985) and Hogan (1992). It was also shown that for complex signals the overturning curve may 

contain bays and islands (Zhang and Makris 2001; Makris and Vassiliou 2012; Dimitrakopoulos and 

DeJong 2012; Voyagaki et al. 2013a; Dimitrakopoulos and Fung 2016; Ther and Kollár 2017a). (This 

overturning curve is called overturning acceleration spectrum by some researchers (Zhang and Makris 

2001; Makris and Vassiliou 2012). In this thesis the latter name is used for a modified diagram, see 

subsection 5.1.1.) 

Researchers investigated overturning for white noise-based artificial earthquake records (Housner 1963; 

Priestley et al. 1978; Aslam et al. 1980; Yim et al. 1980; Ishiyama 1982; DeJong 2012) and also for real 

earthquakes (Ishiyama 1982; Makris and Konstantinidis 2003; Peña et al. 2006; Peña et al. 2007; DeJong 

2012; Makris and Vassiliou 2012; Voyagaki et al. 2013a). Makris and Vassiliou (2012) showed that the 

effect of a near-fault, pulse-like earthquake can be replaced by a single rectangular pulse with properly 

chosen pulse duration. Ther and Kollár (2017a) have shown that fullness of the replacement pulse and the 

secondary pulse have a major effect on the OC.  

 

Fig. 7 Geometry of the rigid block (the aspect ratio is: H/B=cotδ, moment of inertia about the corner 

point is 𝛩 =
4

3
𝑅2𝑚, where m is the total mass)  

As mentioned above, the overturning curve of a single rectangular block subjected to a half sine pulse 

was introduced by Housner (1963). For a given block and a given signal shape (e.g. a simple half sine) it 

can be defined as the curve which separates the safe and unsafe regions on the ap, tp plane where ap is the 

maximum intensity of the main pulse lobe (acceleration) and tp is the duration of the pulse (Fig. 8a). If the 

ap and tp parameters of a pulse correspond to a point on the left side of the curve, it will not overturn the 

block. If ap<ap,min the block will not move at all, where (Fig. 7) 
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𝑎p,min = 𝑔 tan 𝛿 (3) 

and g is the acceleration of gravity. The OC can be calculated for other signal shapes (Zhang and Makris 

2001; Makris and Konstantinidis 2003; Makris and Vassiliou 2012; Dimitrakopoulos and DeJong 2012; 

Voyagaki et al. 2013a; Voyagaki et al. 2013b; Dimitrakopoulos and Fung 2016), examples for two and 

three consecutive half sines are shown in Fig. 8b and c (tp is the duration of the half sine). Within the 

unsafe region there are (narrow) safe bays. In this case (or for more complex signals, where there are 

several bays and islands) a single envelope can be used for design purposes. All three figures show that 

for a given block both a shorter pulse with higher intensity and a longer pulse with lower intensity can 

cause the overturning of the block. The rotations of the block for different pulses are presented in Fig. 9. 

 

Fig. 8 Overturning curve (OC) for a single block subjected to a half sine pulse (a) a full sine signal (b) and for a 

signal of three half sines (c) 

 

 

Fig. 9 Motion of the rocking block for different impulses. (See the numbered dots in Fig. 8b.) 
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Chapter 2 Problem statement 

Modelling of single blocks 

As we stated in Chapter 1 (see Fig. 3 and Fig. 4) experiments show lower energy loss during impact than 

it is predicted by Housner’s model, which means that – as a rule – Housner’s model is not conservative. 

Although, in practice, fudge-factors may be successfully used to obtain proper results, it is worthwhile to 

find a physical explanation for the difference, and – if possible – to have an improved mechanical model.  

Table 1 Experimental results (Ogawa 1977; Prieto-Castrillo 2007; Elgawady et al. 2011) compared with 

Housner’s model. ηHous is the relative energy loss. (ηHous was calculated by  Eq.(1) and (2) except the last 

one, where Eq.(A3) and (2) were used). 

Author 
Material of the 

block 
2h 2b 2b2 h/b 

Loss in Energy 

𝜼̅ ηHous 

Ogawa (1977)  timber 200 100  2.00 37.6% 51.0% 

Ogawa (1977) timber 300 100  3.00 22.6% 27.8% 

Ogawa (1977) timber 400 100  4.00 11.6% 16.9% 

Aslam et al. 

(1980) 

concrete block with 

aluminum plate 
771.5 152  5.08 14.4% 10.9% 

ElGawady et al. 

(2011) 

concrete block with 

steel plate 
950 190  5.00 15.6% 11.2% 

Prieto (2007) granite 1000 250  4.00 12.4% 16.9% 

Prieto (2007) granite 1000 170  5.88 5.3% 8.2% 

Prieto (2007) granite 1000 120  8.33 4.4% 4.2% 

Prieto (2007) granite 500 246 160 2.03 14.0% 25.2% 

Our aim is to give a physical explanation why Housner’s model overpredicts the loss in energy, and to 

develop a physical model which agrees better with the experiments. 

 

Modelling of columns consisting of rigid blocks 

As can be seen in the Introduction mechanical models are available for single blocks (Housner 1963) and 

two-block columns (Psycharis 1990; Spanos et al. 2001), no model is available for multi-block columns 

with more than two blocks. 

Available FE codes (e.g. ANSYS, OpenSees, etc.) might be able to calculate the motion of blocks 

including the deformability of the elements and the geometrical nonlinearities. However, no proper 

“impact” and “opening” routines are available, hence these codes must be combined with “opening” and 

“impact” models. We did so and connected OpenSees with our own MatLab “opening” and “impact” 

routines (described in section 3.2), however, we had numerical difficulties. The reason was the high 

frequency axial vibration of the elements (also mentioned by Vassiliou et al. (2016)), which made it 

difficult to verify the eccentricities of the normal forces and, in a few cases, resulted in unstable solutions. 
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This is why we decided to develop our own code with a low number of degrees of freedom, to obtain a 

robust, reliable tool to calculate the response of multi-block columns assuming rigid body theory. 

We consider a column which consists of rigid (brick or stone) blocks. It is subjected to an arbitrary 

excitation. During motion, any interface may split open or close and the crack pattern may change with 

time (Fig. 10). We wish to develop a model, which is capable of following the response of the structure. 

In the analysis only the planar displacements of the columns are taken into account. 

 

Fig. 10 Multi-block column 

Damping during motion is neglected, however, at the closing of interfaces there is a loss in energy due to 

inelastic impact (Housner 1963).  

Using the new model we wish to investigate the observation made by Psycharis et al. (2000) and Dimitri 

et al. (2011) that monolithic blocks are more vulnerable to overturning than multi-block systems. 

 

Design methodology of rocking mechanism 

For the design of blocks for single pulse-like signals the overturning curve (OC) was introduced by 

Housner (1963). 

We consider a multi-block column (Fig. 10), which is subjected to base (earthquake) excitation. We wish 

to develop a design methodology to determine whether the structure is safe. Similarly to the response 

spectrum analysis (RSA), where the design can be performed on the basis of the response spectrum, we 

wish to determine the required design parameters (or curves) which can be applied for the checking of 

overturning of columns. We wish to give recommendations on how the earthquakes (both near field and 

far field types) can be represented by a few parameters, in such a way that the responses of rigid columns 

calculated by time history analysis and by the developed procedures are close to each other or at least the 

latter one can be used as a conservative approximation to predict overturning. 
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Chapter 3 Method and modelling 

In the following subsections the modelling of single and multi-block structures are presented. 

3.1 Refinement of Housner’s rocking model 

First, we apply a simple modification on Housner’s classical model. It is assumed that the surface of the 

block (or the ground surface) is not perfectly smooth, but there is a small bump (or aggregate) in the 

middle (Fig. 11a). In this case the rocking occurs with two impacts (Ther and Kollár 2014). Before 

rocking the block rotates around corner A. Then, impact occurs, and the 

 block rotates around point C (bump or aggregate). Following that a 

 second impact occurs and the block rotates around corner B. 

If the size of the bump (or aggregate) is small, then the time between the two impacts is also small, 

however, the final angular velocity is higher than in Housner’s model. (This can be shown simply by 

applying Housner’s model twice. See Eq.(A8) in Appendix A.) 

If there are two bumps (Fig. 11b), rocking occurs with three impacts, and if there are n bumps (which 

form a convex surface), rocking occurs in n+1 impacts. Fig. 12 shows the loss in kinetic energy as a 

function of the aspect ratios with 1, 2, ...100 bumps. If the number of bumps goes to infinity, the block 

will “roll” and the energy loss is zero. 

 

Fig. 11 Rocking block. a: one bump in the middle, b: two bumps, c: several bumps 

 

 

Fig. 12 Loss in kinetic energy as a function of slenderness of the block for n bumps 
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In reality, there is no perfect surface (Fig. 13a), and as it was shown above, even a small unevenness of 

the surface (bump or aggregate) changes the loss in the kinetic energy during rocking significantly.  

We assume that the main reason that Housner’s model overpredicts the loss in kinetic energy is the 

following: 

 impact does not occur purely at the edges of the blocks (Fig. 13b), rather – in consecutive steps – 

at bumps and then at the edges (Fig. 13c). 

We suggest that Housner’s model can be improved by taking into account these additional impacts during 

rocking. 

 

Fig. 13 Comparison of Housner’s model and the modification with an additional bump in the middle 

To evaluate the above hypothesis experiments were carried out, which are presented in subsection 4.1. In 

addition, we investigated some of the experiments available in the literature. 

 

To demonstrate the importance of the improvement of Housner’s model we simulated the motion of a 

block subjected to a base excitation recorded at the Northridge earthquake (Fig. 14a, 1994, 

NORTHR/MUL009 component). The aspect ratio of the element is 4, while its diagonal is 2.6 m, hence 

its sizes are b=0.315 m and h=1.261 m. When Housner’s classical model is applied (Fig. 14b) the block 

does not overturn, its maximum inclination is about 80 percent of the neutral position (at about 9 s). 

When the above improved model is applied (with one additional bump), which agrees better with the 

experiments (see section 4.1), it can be observed that the inclination of the block becomes bigger and 

bigger during the excitation, resulting in overturning at about 11 s. 
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Fig. 14 The rocking motion of a block considering the original Housner’s model and the proposed 

improvement 
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3.2 Opening and impact model for multi-block structures 

It is assumed that the column contains rigid elements and the motion occurs by the rotations at the 

cracked interfaces between two blocks (Fig. 10). In the following models are presented for the opening 

and closing (impact) of interfaces. In theory the program may take into account the sliding of the 

elements, however, a sufficiently high friction coefficient was assumed, and (except for the case of 

tension) failure was always governed by overturning, not by sliding. 

3.2.1 The mechanical model 

We consider a multi-block cantilever structure where all the blocks are rigid. The adjacent blocks may 

move together (Fig. 15a) split open clockwise (Fig. 15b) or counterclockwise (Fig. 15c). 

 

Fig. 15 Opening possibilities of an interface (closed (a), open clockwise (b) and counterclockwise (c)) 

Since only one of the three possibilities may occur for every possible opening-configuration a new 

formulation should be given. The key element of our model is that at the interfaces both clockwise and 

counterclockwise rotations are considered.  

When there are nb blocks and nb interfaces freely moving in 2D, the number of independent motions is 

2nb (Fig. 17b), 

 
𝛗 = {𝜑̌1  … 𝜑̌𝑛𝑏 , 𝜑̂1…  𝜑̂𝑛𝑏}

T
, (4) 

where due to geometrical constraints 

 
𝜑̌i ≤ 0,     𝜑̂i ≥ 0 → no overlapping. (5) 

This formulation has two advantages: 

1) The dynamic problem must be formulated only once and the actual configuration is obtained by 

setting some of the displacements (at least nb) to zero. More importantly: 

2) during impact the interface where closing occurs may open up in the other direction (Fig. 16a), 

and hence in the impact model (see section 3.2.3) both clockwise and counterclockwise 

rotations must be included. 

 

Fig. 16 Possible motions of an interface after impact 

For the formulation between impacts only one of the three cases (Fig. 15) may occur in the same time and 

only one of each 𝜑̌i – 𝜑̂i pair can be nonzero (Eq.(5)). 

The equation of motion for the entire problem can be written as 

 
𝐌c𝛗̈ = 𝐦, 

(6) 
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where 𝛗̈ is the second derivative of the rotation vector (Eq.(4)) with respect to time, m is the load vector 

and Mc is the mass matrix. To formulate the problem, it is easier to start with horizontal and vertical 

displacements and vertical (gravitational) and horizontal (earthquake) loads. The transformation of the 

equation of motion, when the displacements are replaced (the horizontal and vertical displacements by 𝜑 

rotations) are described in Appendix C, where 𝐌c = 𝐌̃, 𝛗̈ = 𝐮̈̃ and 𝐦 = 𝐩̃. The load vector m contains 

2nb moment couples which are determined from the base excitation. A numerical example is presented in 

Appendix C. 

 

 

Fig. 17 The degree of freedom of the model. One possible case of a three-block system (a), the 

theoretically possible motions (b) and the choice of the zero and non-zero rotations (c) 

Matrix 𝐌c has 2nb rows and columns, however, for a given configuration some of the displacements are 

zero, and it is sufficient to consider only a submatrix of 𝐌c, and the corresponding subvectors of 𝛗̈ and 

𝐦. 

In determining the response of the structure three tasks must be considered: 

1) solving (a subset of) Eq.(6) for a given configuration (3.3), 

2) determining the opening of some of the interfaces (3.2.2), 

3) solving for closing of one of the interfaces (3.2.3). 

3.2.2 Model for opening 

If at one (or more) interfaces the eccentricity of the normal forces reaches the width of the column, one or 

more interfaces split open. Accordingly, the configuration changes and the equation of motion (Eq.(6)) 

must be solved (see subsection 3.3) with this new geometry. In this section the procedure of finding the 

new open interfaces is discussed. 

 

Fig. 18 False opening solution of a two-block column  



  Analysis and design of rocking mechanisms 

Method and modelling  15 

It seems a good strategy either to open the interface where the eccentricity is the highest or to open all the 

interfaces where the eccentricities are outside the width of the blocks. We found, however, that this 

procedure might be numerically unstable. The reason that the change in the acceleration within one time 

step can be high enough to open more than one interfaces as is illustrated in Fig. 18, where two blocks are 

subjected to gravity loads and to a horizontal top impulse. It is assumed that the forces cause at both 

interfaces higher eccentricity than the block’s width at both interfaces. Following the above strategy 

results in the configuration shown in Fig. 18b. If we solve the equation of motion with this configuration 

we receive impossible solution (Eq.(5)), since the sign of the opening at the bottom will be the opposite of 

that shown in Fig. 18b. In reality the opening scheme will be the one shown in Fig. 19e. In theory there 

are 8 possible opening configurations (see Fig. 19a-h), however, the one shown in Fig. 19e will occur. To 

overcome this difficulty there are two options: either (i) the length of the time step is reduced to ensure 

that the change in acceleration is small and there are several time steps between the opening of each 

interface or (ii) we consider all the kinematically admissible configurations. 

If there are nclosed closed interfaces, the total number of possible cases is (3𝑛closed − 1), since every 

interface can open clockwise, counterclockwise or can remain closed, however, it is impossible that all 

the interfaces remain closed. 

 

 

Fig. 19 Possible cases of a two-block column 

When the number of closed interfaces (nclosed) are not high, nclosed ≤ 9 (if nclosed = 9, the number of cases is 

about 20 000) the recommended strategy is as follows: 

- determine all the possible cases (3𝑛closed − 1),  

- chose those where the displacements after the first time step are compatible (see Eq.(5)), these are 

the kinematically admissible configurations, 

- if there are more than one kinematically admissible configurations, chose the one where the kinetic 

energy is the highest. (Note that so far we have found always only one admissible configuration.) 

When the number of the closed interfaces is high, the above procedure is very time consuming, and it is a 

better strategy to reduce the length of the time steps. 

 

3.2.3 The impact model 

When an interface (e.g. the ith one) is closing impact occurs. First we discuss how the change in velocities 

can be calculated if the opening configuration after impact is assumed to be known. An example is shown 

in Fig. 20, where impact occurs at the third interface; the first interface remains closed after impact, while 
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the third and fourth one open up. The change in angular velocities is calculated according to Eq. (B6) (see 

Appendix B): 

 

{
 
 

 
 
∆𝑣1
⋮

∆𝑣𝑖−1
∆𝑣𝑖+1
⋮

∆𝑣𝑚 }
 
 

 
 

=

[
 
 
 
 
 
𝑚1,1 … 𝑚1,i−1 𝑚1,i+1 … 𝑚1,m
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑚i−1,1 … 𝑚i−1,i−1 𝑚i−1,i+1 … 𝑚i−1,m

𝑚i+1,1 … 𝑚i+1,i−1 𝑚i+1,i+1 … 𝑚i+1,m

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑚m,1 … 𝑚m,i−1 𝑚m,i+1 … 𝑚m,m ]

 
 
 
 
 
−1

{
 
 

 
 
𝑚1,𝑖
⋮

𝑚𝑖−1,𝑖

𝑚𝑖+1,𝑖

⋮
𝑚𝑚,𝑖 }

 
 

 
 

∆𝑣𝑖 
(7) 

 

 

Fig. 20 Configuration before (a), during (b) and after (c) the impact 

where ∆𝑣𝑖 is the angular velocity of the closing interface before impact, ∆𝑣1 − ∆𝑣m are the change in 

velocities of the opening interfaces, and mij are the elements of the mass matrix. For the case shown in 

Fig. 20 Eq.(7) becomes: 

 

{
 
 

 
 ∆𝜑̇̌2
𝜑̇̌3
𝜑̇̂4
∆𝜑̇̂5}

 
 

 
 

= [

𝑚2,2 𝑚2,3 𝑚2,9 𝑚2,10

𝑚3,2 𝑚3,3 𝑚3,9 𝑚3,10

𝑚9,2 𝑚9,3 𝑚9,9 𝑚8,10

𝑚10,2 𝑚10,3 𝑚10,9 𝑚10,10

]

−1

{

𝑚2,8

𝑚3,8

𝑚9,8

𝑚10,8

} (−)𝜑̇̂3. 
(8) 

Interfaces 3 and 4 open up, hence for these interfaces the changes in velocities are identical to the new 

velocities, while interfaces 2 and 5 are open before (and after) impact, for these interfaces Eq.(8) gives the 

change in angular velocities. 

Now the kinematically admissible configurations are discussed. To choose the proper case is not an easy 

task, and it was found − similarly to the opening model − that in many cases the case, which seems trivial, 

is physically impossible. This is why we decided to investigate all the possible options. 

Assume that there are nclosed closed interfaces before impact. Each can be closed or open clockwise or 

counterclockwise after impact. This means that the total number of cases is 

 
2 × 3𝑛closed , (9) 

where 2 is due to the fact that the closing interface (where the impact occurs) may either split open 

(opposite to the closing direction), or remain closed (see Fig. 16 and Fig. 21), however it is assumed that 

the impact is inelastic and the closing interface cannot bounce back. (For elastic impact bouncing back is 

a realistic option (Vassiliou et al. 2015; Giouvanidis and Dimitrakopoulos 2017)). 
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Fig. 21 The possible rocking motions after impact (nclosed=1) 

The following strategy is recommended if nclosed is small 

- for each case (Eq.(9)) determine the change in velocities during impact (Eq.(7)),  

- throw out the kinematically impossible configurations, where at the opening interface 𝜑̇̌i ≥ 0,

𝜑̇̂i ≤ 0, 
- if there are more than one kinematically admissible configuration chose the one for which the 

kinetic energy (𝐸kin =
1

2
𝛗̇T𝐌c𝛗̇) is the highest, i.e. where the dissipated energy is the lowest. 

When the number of closed interfaces is high a search scheme should be developed, which is not 

implemented yet. 

 

The impact model and Eq.(7) was verified by the expressions presented by Psycharis (1990) for a two 

block mechanism. Two blocks (height=300 mm, width=100 mm, m=15 kg) are placed on top of each 

other (Fig. 22a). The lower block is motionless, while the upper one rotates around its corner and reaches 

the interface by angular velocity ω2,before =1.0 1/s (Fig. 22a). It is assumed that after impact both interfaces 

open up (Fig. 22b). The 4 by 4 mass matrix of the system is: 

 
𝐦 = [

3.700 1.175 3.550 1.100
1.175 0.500 1.100 0.425
3.550 1.100 3.700 1.175
1.100 0.425 1.175 0.500

], (10) 

while Eq.(7) gives 

 
{
∆𝜔1
∆𝜔2

} = [
3.700 1.175
1.175 0.500

]
−1

{
3.550
1.100

} 1.0 = {
0.1079
0.5965

} [1 𝑠⁄ ], 
(11) 

where ∆𝜔𝑖 is the change of the angular velocity in the ith interface. Since both velocities are positive the 

opening is kinematically admissible (Eq.(5)). The angular velocities of the blocks are: ωblock,1=0.1079 

[1/s], ωblock,2=0.7044 [1/s]. (The change in kinetic energy is 25.6%.) 

The angular velocities were also calculated by Eq. 24 of Psycharis (1990), and we obtained the same 

results. 

(If – instead of Housner's model – two consecutive impacts are assumed (see section 3.1), the velocities 

are: ωblock,1=0.0539 [1/s], ωblock,2=0.7443 [1/s], and the change in kinetic energy is 13.9%.) 
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Fig. 22 A possible opening scheme of the investigated two-block system 



  Analysis and design of rocking mechanisms 

Method and modelling  19 

3.3 Dynamical model for multi-block structures 

Several robust methods are available to solve Eq.(6), here Wilson’s method (Chopra 1995) is applied. 

Note that the size of the problem depends on the number of open interfaces, if nh (≤nb) interfaces are open 

there are nh unknowns. To start the calculation the initial displacements, 𝛗𝟎 and the initial velocities, 𝛗̇𝟎 

must be given. (At the very first calculation both are zero.) At every time step three conditions were 

investigated: 

- at every closed interface the eccentricity of the normal force must be within the width of the 

elements, 

- at every open interface the motions must satisfy Eq.(5), 

- at every interface the N normal force must be compression, and 𝜇𝑁 ≥ |𝑉|, where 𝜇 is the friction 

coefficient and V is the shear force. 

If either one of these is not satisfied the calculation is terminated and in the first two cases the instant of 

termination is calculated by linear interpolation within the last step.  

In the first case one (or more) closed interfaces must split open (see section 3.2.2), in the second case 

impact occurs (see section 3.2.3), while in the third case the column may disintegrate and the whole 

process is terminated. (After sliding at an interface the column may carry further loads, however, this case 

is not investigated in this thesis.) 

When the termination is due to the first or second case, we recalculate (see section 3.2.2 and 3.2.3) the 

configuration (new geometry) and the initial velocities, and solve again the equation of motion (Eq.(6)). 

The change in geometry was taken into account by recalculating the geometry at each time step. 

Numerical comparisons showed that this simple procedure – since in Wilson’s method relatively small 

time steps are required – has high accuracy. (We compared the results for the cases, when the geometry 

was recalculated in every second and fourth time step. The results were practically identical.) 

Calculation of a column 

As long as the base excitation causes small eccentricities it is assumed that the column – as a rigid body – 

moves together with the base. When the eccentricity reaches the width of the elements first the “opening 

model” is executed, which is followed by Wilson’s method with initially zero displacements and speeds. 

It is terminated if one of the conditions given in section 3.2 does not hold. 

Following that either the opening or the impact model is executed, and then the equation of motion is 

solved again as described above. The calculation is terminated when tension or obvious failure 

(overturning) occurs. 
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3.4 Summary 

It was found that the main reason for the difference between Housner’s impact model and the 

experimental results is that in the original model the best case scenario was assumed: that impact occurs 

at the edges (Fig. 13b), which results in the maximum energy loss. In reality, due to the unevenness of the 

surfaces, or due to the presence of aggregates between the interfaces, rocking may occur with consecutive 

impacts, which reduce the energy loss. 

A simple possible phenomenological improvement of Housner’s model is that one additional bump (and 

consequently an additional impact) is assumed in the middle of the interface (Fig. 13c). This modified 

model is proposed to be taken into account, when masonry and stone columns and arches (Fig. 5) are 

analysed. 

The most important new features of the multi-block model are the “opening” and the “impact” model. In 

both cases several new configurations (crack patterns) may occur, the right one is chosen by investigating 

the signs of motions and the change in kinetic energy. 

In formulating the impact model the mass matrix must be formulated for the case where (at the interface 

where impact occurs) both the clockwise and counterclockwise openings are considered (Fig. 17b): this is 

also a new and necessary element of the model. 

We emphasize that the model is purely mechanical: assuming rigid blocks and classical (inelastic) impact. 

There are no numerically set parameters, we do not use any “fudge-factor”. (Instead of Housner’s model 

two consecutive impacts are considered, as it is described section 3.1.) 

The new opening and impact models can be implemented also in FE programs (e.g. OpenSees), which 

may enhance the applicability of the models significantly. 
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Chapter 4 Experimental verifications of the model 

At the Adolf Czakó Laboratory of BME several experiments were run to verify the models presented in 

Chapter 3. 

4.1 Energy dissipation of a single rigid block 

Two granite blocks were manufactured with different aspect ratios, shown in Fig. 23. (At two adjacent 

edges approximately 5 × 5 mm triangular prisms were cut off.) The depth of the blocks was 300 mm to 

maintain the 2D rocking motion, since blocks with square cross sections, as it is reported by Zulli et al. 

(2012), may show 3D twisting motion. The rocking of each block was tested in 4 different configurations 

(Fig. 24a-d):  

a) rocking on the surface, where the corners are cut off, 

b) rocking on the same surface with a 2 mm diameter wire attached at the midpoint, 

c) two wires attached at the opposite surface, where two wires attached 7 mm from the edges middle 

(Our intention was to place the two wires at the same distance as the width between the cuts, i.e. 

~5 mm from the edges, however there is a small difference.), 

d) an additional 4 mm diameter wire attached at the middle. 

Note that the Young modulus of the steel is about 3-4 times bigger than that of the granite, hence the 

somewhat softer contact has only a minor effect. (Table 3, configuration c shows that the calculated, 

theoretical value of the energy loss – assuming inelastic impact – is 17.2%, while the measured value – 

due to the deformations and/or the slip is only a little bit higher: 19.5%.)  Configuration a basically agrees 

with Housner’s case with the slight modification that the axes of rotations are 5 mm from the edges of the 

blocks. The reduction in kinetic energy slightly changes as well, as discussed in the Appendix A (see 

Eqs.(2) and (A3)). 

In case of configurations b and d two impacts occur during rocking; while in case of configuration c it is 

made sure that one impact occurs exactly at the chosen position defined by the wires close to the edges.  

 

  

Fig. 23 Picture and the sizes of granite blocks used in the experiments 

 

 

Fig. 24 Configurations of a block applied in the tests 



  Analysis and design of rocking mechanisms 

Experimental verifications of the model 22 

 

We ran each configuration 40 times, hence, the number of performed tests is 320. In each test a block was 

placed on a horizontal, 35 mm thick steel plate, the block was tilted close to its neutral position, and then 

it was moved by the gravity force (free rocking). The motion was measured by an x-IMU device with 256 

Hz accuracy.  (For comparison, in a few cases one of the blocks were placed on top of the other granite 

block instead of the steel surface. The results of rocking were identical to those when rocking was 

performed on a steel plate.) 

A typical displacement (angle of rotation) curve as a function of time is given in Fig. 25 by solid line.  

 

 

Fig. 25 Angle of rotation as a function of time, configuration d) (the potential energy of the block was 

measured at the maximum amplitudes of the rotations marked with arrows) 

An important measure of the behaviour of the system is the change in kinetic energy before and after each 

rocking. The system has kinetic and potential energy. The first one is zero when the vertical displacement 

is maximum, while the second one is taken to be zero when the angular rotation is zero, and hence the 

vertical displacement is minimum. As a consequence, by neglecting the energy loss between two 

consecutive impacts, the maximum kinetic energy is identical to the maximum potential energy (Ei). Thus 

Ei can be calculated by multiplying the maximum vertical displacement of the centre of gravity by the 

weight of the block. The relative energy loss is calculated as 

 
𝜂̅𝑖 =

𝐸i − 𝐸i+1
𝐸i

≈
𝑢i − 𝑢i+1

𝑢i
, (12) 

which is also shown in Fig. 25. In Eq.(12) ui and ui+1 are the amplitudes of displacements before and after 

the i-th rocking. (We applied the “bar” to identify that 𝜂̅ is obtained from an experiment.) It is important 

to notice that with reasonable accuracy the values of 𝜂̅i are identical at every rocking. 𝜂̅-s – calculated as 

the average of four consecutive 𝜂̅i-s of each experiments, are given in the first two columns of Table 2 

and Table 3. The presented numbers are the average of 40 tests, which are followed ± the standard 

deviation. We may observe that the highest standard deviation belongs to configuration a, where the 

unevenness of the surface affects the impact. 

During the impacts it was observed that small slips (and a minor twisting) occurred, which means that 

part of the loss in energy is due to the slips and not due to the impact. In two cases, identified in Table 3 

by an asterisk, the slip was significant.  

By comparing the experiments to each other a few important observations can be made.  
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Table 2 Relative energy loss between adjacent rockings in the experiments ( ) and in Housner’s model 

(ηHousC, Eqs. (1), (2) and (A3)) 

 

𝜂̅ 𝜂HousC   

Slenderness: h/b Slenderness: h/b 

2.79 3.70 2.79 3.70 

configuration a 13.4±3.0% 12.4±0.9% 28.4% 17.7% 

 

Table 3 The relative energy loss between adjacent rockings in the experiments ( ) and in the calculation 

(𝜂HousC for configuration c, and 𝜂HousC
2imp

 for configuration b and d.) 

 

 

𝜂̅ 𝜂HousC & 𝜂HousC
2imp

 

Slenderness: h/b Slenderness: h/b 

2.79 3.70 2.79 3.70 

configuration 

b 11.2±1.2% 6.9±0.4% 14.8% 9.0% 

c 57.9%* 19.5±1.0% 26.5% 17.2% 

d 22.9%* 8.8±1.0% 13.8% 8.6% 

 

1) 𝜂̅a < 𝜂HousC, as it was expected the energy loss in the experiment is much smaller than in 

Housner’s model (13.4<28.4; 12.4<17.7; Table 2).  

2) 𝜂̅a < 𝜂̅c, i.e. when impacts are enforced to occur at the edge, the energy loss is higher than on 

the rocking block (12.4<19.5; Table 2 and Table 3). Note that significant slips occurred with 

configuration c for the lower aspect ratio during the motion, which explains the very high 

energy loss. 

3) 𝜂̅b < 𝜂̅c, the energy loss is smaller if two impacts occurs instead of one (11.2<57.9; 6.9<19.5; 

Table 3). 

4) 𝜂̅c ≃ 𝜂̅HousC, if it is made sure that impact really occurs at the edges the difference between the 

experiments and Housner’s model is small at the slender block (19.5>17.2; Table 2 and 3). 

5) 𝜂̅a > 𝜂̅b, an enforced impact at the middle decreases the loss in energy, note, however, that the 

difference is much smaller than in item 1 (11.2<13.4<28.4; 6.9<12.4<17.7; Table 2 and 3). 

 

We can also extended Housner’s rocking model with the following modifications: 

 impact may occur at an arbitrary position, not only at the corners. The equations corresponding to 

this modification are given in Appendix A. 

 several impacts may arise consecutively (see Appendix A for two consecutive impacts).  

With these modifications the motion of the blocks with configurations b, c and d were also calculated. A 

typical example is shown in Fig. 26. The relative loss in energy is given in the last two columns of Table 

3. In every case the experimental values are 1-3% off the calculated value. That difference is much 

smaller than between the “classical” experiments (configuration a) and Housner’s model (5-15%, see 
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Table 2). For configurations b and c the change in the amplitudes in the experiments and the calculations 

are close to each other (Fig. 26b, c), while for configuration a the original Housner’s model overpredicts 

the change in amplitude, and the modified underpredicts it (Fig. 26a). 

 

 

Fig. 26 Examples of the experimental results for configuration a), b) and c), investigating the block with 

slenderness 3.7 

It is also an important observation that 𝜂̅a > 𝜂̅b, however, the difference is smaller than the difference 

between 𝜂̅a and the classical Housner’s model. It seems a reasonable approximation for the modeling of a 

rocking block that a bump is assumed at the middle of the block. According to our calculations and 

experiments this is a conservative approximation since this model underpredicts the loss of energy (while 

the classical Housner’s model overpredicts it).  

We have also tested this hypothesis with the experiments published by Ogawa (1977); Aslam et al. 

(1980); Prieto-Castrillo (2007) and Elgawady et al. (2011). See Fig. 27, where the dashed line represents 

Housner’s model with an extra bump in the middle. 
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Fig. 27 Experimental results compared with the classical Housner’s model and with the refined model 

including a bump in the middle. 
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4.2 Opening schemes of multi-block structures 

 

 

Fig. 28 The initial inclination of the two-block system 

Two granite blocks (height=300 mm, width=100 mm, thickness=200 mm) were placed on top of each 

other (Fig. 28). The edges of the blocks were cut off, so the connected width of the elements were 96 mm. 

The upper block was released from an inclined position (φ2=0.153 [rad]) and the rotation of the blocks 

was measured by x-IMU devices with 256 Hz sampling rate. The recorded and the simulated rotations of 

the blocks are presented in Fig. 29. As it was mentioned before (Section 3.1), the energy loss during 

impact is lower than the one predicted by Housner’s model which can be taken into account by assuming 

two consecutive impacts (Ther and Kollár 2017d) (see Fig. 11a). 

 

Fig. 29 The recorded (a) and the simulated (b) rotations of the two-block system during the free-rocking 

experiments 

According to our calculation at t=0.13 the lower interface also opens up slightly and the lower block 

rotates clockwise. The upper block impacts the lower at 0.187 s and rotates counterclockwise. The lower 
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block impacts the base at 0.193, and then it also rotates counter clockwise. Afterwards the upper element 

rocks on top of the lower one, and then the two blocks move together. 

The measured and the calculated rotations are close to each other. More importantly the observed and 

predicted opening-configurations are practically identical. (An even better agreement can be reached if 

we take into account that the faces of the blocks are not perfectly perpendicular to each other. In the 

calculation perfect elements were assumed.) 
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4.3 Base excitation of multi-block columns 

 

 

Fig. 30 The three-block column made of granite blocks 

A column made of 3 granite blocks was investigated (Fig. 30). The dimension of the elements are 

height=200 mm, width=100 mm and the thickness is 300mm. The edges of the blocks (2x2 mm) were cut 

off. 

The system was placed on a shaking table and it was excited by a motion shown in Fig. 31. (It is close to 

a sine pulse with period 0.6 s, and amplitude 45 mm.) The motions of the blocks and the shaking table 

have been recorded by a Full HD camcorder, with 50 frames per sec. The acceleration of the shaking 

table was also recorded by an x-IMU device. The rotations of the elements have been identified by an 

image-procession algorithm, written by the authors. One of the experimental results is presented in Fig. 

32a.  

 

Fig. 31 The base excitation of the blocks (measured on the shaking table) 

In Fig. 32b the calculated rotations of the three-block system is plotted. The measured base accelerations 

were used as input data for the calculations. The same opening and closing configurations are clearly 

visible. The experimental and the numerical results show acceptable agreement. 
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Fig. 32 The experimental (a) and numerical (b) results of a base excitation test 
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Chapter 5 Overturning of columns for base excitation 

In the next subsections the overturning of single and multi-block structures are investigated. Overturning 

curves (OC) for simple signals are given in Fig. 8. 

5.1 Overturning of single blocks for base excitation 

5.1.1 Overturning Acceleration Spectra of single blocks for simple pulses 

First, the normalized overturning curve (OC) (Housner 1963) is shown for a block with a given aspect 

ratio subjected to a single half sine pulse in Fig. 33a. Both axes are dimensionless, the vertical axis is 

normalized by ap,min (Eq.(3)), while the horizontal axis by the inverse of the “frequency parameter” (p), 

defined by Housner (1963):  

 𝑝 = √
𝑚𝑅𝑔

𝛩
= √

𝑔

𝛼𝑅
,      𝛼 =

4

3
, 

(13) 

where Θ is the mass moment of inertia about the corner point where the rotation occurs (Fig. 7), m is the 

total mass, R is the distance between the centre of mass and the corner point and g is the acceleration of 

gravity. Note that some researchers present acceleration as a function of ptp (Yim et al. 1980; Voyagaki et 

al. 2013a) (as shown in Fig. 33), while others use its inverse, 1/(tpp) (Zhang and Makris 2001; Makris and 

Konstantinidis 2003; Makris and Vassiliou 2012; Dimitrakopoulos and DeJong 2012; Dimitrakopoulos 

and Fung 2016). 

 

Fig. 33 Normalized overturning curve (OC) for a single block subjected to a half sine pulse (a) (see 

Housner (1963)). The OC shows the effect of the pulse length (b) while the OAS shows the effect of the 

block size (c). 

The horizontal axis of Fig. 33a depends both on pulse duration and on block size. For a given block size 

(R=6.0 m in Fig. 33b) the OC is a function of the pulse length, while for a given pulse duration (tp=0.7 s 

in Fig. 33c) it is a function of p. Hence the curve clearly shows a size effect. The smaller the block the 

more vulnerable it is to overturning.  

The period of vibration T of a rocking block is defined as four times the duration between an inclined 

(motionless) φo position and the position of impact (φ=0). T depends on the block’s maximum inclination 

(φo). Housner (1963) derived an approximate expression for T: 

 
𝑇 ≈ 4√

𝛼𝑅

𝑔
cosh−1

𝛿

𝜑𝑜 − 𝛿
. (14) 
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Eq. (14) tends to infinity as φo approaches the neutral position δ of the block (Fig. 7). It can be shown that 

for a given inclination, φo the period of vibration is proportional to the square root of the block size: 

 
𝑇~

1

𝑝
= √

𝛼𝑅

𝑔
,    (for given 𝜑0). 

(15) 

Accordingly, on the horizontal axis of OAS we have the frequency parameter, which is proportional to 

the inverse of the period of vibration of the rocking block. 

The plot in Fig. 33c is called Overturning Acceleration Specra (OAS), where the horizontal axis depends 

only on the block’s size and not on the pulse duration. This representation will be used for earthquake 

records. 

5.1.2 Overturning Impulse Curve 

We define the impulse (I) and the fullness (F) of a single-lobe pulse in the following way: 

 
𝐼 = ∫ 𝑎

𝑡p

0

𝑑𝑡,   𝐹 =
𝐼

𝑎𝑝𝑡𝑝
,   (16) 

where a is the acceleration, tp is the duration of the pulse and ap is its maximum intensity (see Fig. 6a). 

Either a longer duration or a higher impulse may cause the failure of a block. The horizontal coordinate of 

the overturning curve (Fig. 33a) is multiplied by Fap. By so doing we obtain the overturning impulse 

curve (Ther and Kollár 2017c), where on the horizontal axis we have the impulse: Faptp=I. Its normalized 

version is shown in Fig. 34b. 
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Fig. 34 The overturning curve and the overturning impulse curve for half (a,b) and full (c,d) sine pulses 

 

 

Fig. 35 The OAS (a) and the transformed OAS (b) of a full-cycle sine with different impulse durations 

When there is a single-lobe pulse, the impulse curve is monotonic and tends to 𝑝𝐼cr 𝑎𝑝,𝑚𝑖𝑛⁄  (Fig. 34b), 

where Icr is the critical impulse of a single-lobe pulse (where the duration tends to zero), which may cause 

the overturning of the block. Its value can be obtained from the elementary dynamics of a block 

(Ishiyama 1982; Makris and Vassiliou 2012): 

 
𝐼cr =

1

cos 𝛿
√2𝛼𝑅𝑔(1 − cos 𝛿) (17) 

and the normalized critical impulse is defined as 

 𝑖cr = 𝑝
𝐼cr

𝑎𝑝,min
= √

2

1 + cos 𝛿
≥ 1. 

(18) 

The second equality was obtained from Eqs. (3) and (17). (For slenderness H/B=cotδ=3: icr=1.013, while 

for cotδ=8: icr=1.002, hence for an aspect ratio over 3: icr≈1 is a reasonable approximation.)  

When there are two (or more) pulses the overturning impulse curves are not monotonic, but there is a 

minimum value of the impulse (imin), see Fig. 34d. 

For a given duration (tp), similar curves are shown in Fig. 35. The curves of Fig. 35a are the OAS for 

given simple signals, while the curves on Fig. 35b are obtained by the following transformation: the 

horizontal coordinate of the OAS is multiplied by Fap/ap,min.  

The overturning impulse curve (or the transformed OAS) contain the same information as the OC (or 

OAS). The advantage of their usage – as will be shown in section 5.3 – that it can be approximated by 

very simple functions; both for simple signals and for earthquake records. 
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5.1.3 Overturning acceleration spectra of single blocks for earthquake excitation 

We define the Overturning Acceleration Spectrum (OAS) for an earthquake record (Ther and Kollár 

2017c) as the curve which separates the safe and unsafe areas in the 𝑎p/𝑎p,min, p coordinate system, 

where 𝑎p is the maximum value of the ground acceleration, 𝑎p,min is given by Eq.(3), p is the frequency 

parameter given by Eq. (13). (Note that the size of the element and the intensity of the earthquake, i.e. the 

ground acceleration is scaled, but the frequency content of the earthquake is not modified.) An example is 

shown in Fig. 36a. The complexity of the earthquake record leads to several safe “bays” and “islands” 

within the unsafe region. We may observe, however, that the shape of the envelope is similar to those of 

simple signals. (This curve can be considered as the generalization of the curve suggested by Makris and 

Vassiliou (2012)). The dimension of the horizontal axis is 1/sec.  

 

Fig. 36 The Overturning Acceleration Spectrum (OAS) of a single block (dot represents overturning) (a) 

based on the FF-1 earthquake record (Northridge-1994, NORTHR/MUL009 component) (b) 

Analogously to the overturning impulse curve we defined the transformed OAS in such a way that the 

horizontal coordinate of the OAS (Fig. 37a) is multiplied by ap/ap,min. The result for an earthquake record 

is shown in Fig. 37b, where 

 
𝑓 = 𝑝

𝑎𝑝

𝑎𝑝,min
 . (19) 

 

Fig. 37 The OAS (a) and the transformed OAS (b) for an earthquake record (Northridge – 1994, 

North/MUL009 component) 
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5.2 Overturning acceleration spectra of multi-block columns  

The normalized overturning curve (OC) and overturning acceleration spectra (OAS) show the 

vulnerability of single blocks (Fig. 38a) to simple signals or earthquakes (see the previous sections). Two 

examples are shown in Fig. 39, one for a full sine pulse, the other for an earthquake record. The presented 

curves separate the unsafe and safe regions, i.e. where overturning occurs or can be avoided. The vertical 

coordinate depends on the maximum acceleration while the horizontal axis on the block size. (The 

horizontal axis of the normalized OC also depends on the pulse duration. p is the frequency parameter, 

defined by Housner (1963).) 

 

Fig. 38 The dimensions of a single block (a) and multi-block columns (b) 

  

Fig. 39 The normalized overturning curve (OC) and overturning acceleration spectrum (OAS) of a single 

block of aspect ratio H/B=12 (𝑎p,min =
𝐵

𝐻
𝑔, 𝑅 =

1

2
√𝐻2 + 𝐵2). On the left the block was excited by a full 

sine pulse, on the right, by the 1992, Erzican - NS earthquake record 

Now we investigate columns with the same aspect ratio (H/B) as those presented in Fig. 39, but the 

columns contain 2 and 3 blocks (Fig. 38b) (Ther and Kollár 2017b). The results are shown in Fig. 40 for 

H=12 m, B=1 m. In the plots the overturning of the structures are plotted on the ap-tp plane. It can be seen 

that with reasonable accuracy single blocks are more vulnerable than multi-block columns. For four 

cases, identified by green (safe) and red (overturning) stars in Fig. 40c, the full rotation-time curves are 

given in Fig. 42, for the three-block column. 
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Fig. 40 The overturning of columns (H=12 m, B=1 m) consisting of 1, 2 and 3 blocks subjected to full 

sine pulse using Housner’ model. The blue dots represent the unsafe solutions (overturning). In the third 

plot (c), the motions of the structure at the marked points are presented in Fig. 42. 

 

Fig. 41 The overturning of columns (H=12 m, B=1 m) consisting of 1, 2 and 3 blocks subjected to full 

sine pulse when there is no energy dissipation during impact. 

 

We think that there are two reasons, why a multi-block system is safer than a monolithic: 

 the effect of “higher mode” of the structure reduces the earthquake load; 

 in higher modes the energy dissipation is also higher. 

For curiosity the same structure was investigated, however assuming “rolling”, no energy dissipation 

during impact. The results (Fig. 41) clearly show that with reasonable accuracy monolithic blocks are 

more vulnerable than multi-block structures. Note, however, that the difference is much smaller than in 

case of inelastic impact. 
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Fig. 42 Rotations of a three-block column excited by sine pulse with ap=4.0 m/s2 and with different tp. 

See Fig. 40c. The red dashed line represents the critical inclination of the column (|𝜑𝑐𝑟𝑖𝑡| = 𝛿). 

The effect of energy dissipation is shown in Fig. 43 for earthquake excitation. Three cases are presented:  

1) 1 impact, which is identical to Housner’s model (Fig. 13b),  

2) 2 consecutive impacts, which is the recommended model (Ther and Kollár 2017d), and which 

agrees well – for a single block – with the experiments (Fig. 13c),  

3) 10 consecutive impacts, when there is practically no energy dissipation, the elements ‘roll’ on 

each other (Fig. 12). 
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Note that the 1, 2 or 10 impacts are instantaneous, the total duration is zero. 

 

 

Fig. 43 The OAS of columns consisting of 1, 2 and 3 blocks with different energy dissipations. The 

column is subjected to 1992, Erzican-NS earthquake record. 

As a rule the lower the energy dissipation, the more vulnerable structures are to overturning. 

We may observe that the more the number of blocks in a column the more important the effect of energy 

dissipation is. The explanation is that during rocking the energy dissipations of a stocky element is higher 

than that of a slender one (Housner 1963). It is also clear that the effect of energy dissipation is more 

important for earthquake records than for simple signals, the reason is that there are more impacts for a 

complex record than for a simple pulse. 
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5.3 Design method for estimating the safety of rocking structures 

We investigate the behavior of single rigid blocks, for it was shown, that single (monolithic) columns are 

more vulnerable, than multi-block columns (see section 5.2). 

To obtain a design procedure for the investigation of a rocking block the approaches available in the 

literature are listed in Chapter 1 (page 5). Here a new approach is presented, which is based on the 

Overturning Acceleration Spectrum (OAS) defined in section 5.1.1. 

After discussing this approach we present its simplified form: the simplified OAS. 

The applicability of the approach was investigated numerically using time history analysis. In our 

research 56 near field (NF) and 44 far field (FF) records were considered (see Table 4 and Table 5), 

which are given in FEMA P695 ( 2009). We investigated 4 different aspect ratios (H/B=3, 5, 8 and 12), 

80 different peak ground acceleration levels (from ap,min to 10 times ap,min) and up to 120 different sizes 

(from Rmax=1000 m down to Rmin=0.1 m, always searching for the largest unsafe block size for a given 

peak ground acceleration). 

In the numerical calculation Wilson’s method is applied as described in Chapter 3. The impact is assumed 

to be inelastic, as it is stated in Housner’s impact model (Housner 1963).  

5.3.1 Characteristic Overturning Acceleration Spectra 

For a given location we can determine the OAS for several earthquake records (Fig. 44a) and then a 

statistically determined characteristic OAS for a given probability of exceedance can be defined (Fig. 

44b). The determination of this characteristic OAS is not the subject of our research, we just give a 

theoretical curve in Fig. 44b. In accordance with Housner (1963) we found numerically that block 

slenderness (considering monolithic column) has only minor effect on the OAS (Fig. 45), and the curve 

corresponding to higher slenderness is a safe approximation of the one which belongs to a lower 

slenderness. In the following calculation a reasonably high slenderness: H/B=12 will be used. As a 

consequence, the resulting characteristic OAS can be used for a wide range of aspect ratios. 

 

 

Fig. 44 OAS-s at a given location (a) and the determined characteristic OAS (b) 
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Fig. 45 The effect of block slenderness on OAS 

 

5.3.2 Simplified Overturning Acceleration Spectra 

Our aim is to have an OAS which can be represented by a few parameters. To reach this goal we consider 

the transformed OAS (Fig. 37b). In Fig. 46 transformed OAS are presented for simple signals. As we 

stated before for a single-lobe pulse the overturning impulse curve is monotonic (Fig. 34b), and hence the 

transformed OAS is also monotonic (Fig. 46a). When there is more than one pulse the transformed OAS 

becomes more complex. However, a vertical dashed line, shown in Fig. 46b-d can be used as an envelope 

in all cases. For the single pulse the ordinate of the asymptote is 
𝑖𝑐𝑟

𝐹𝑡𝑝
=
𝑖𝑐𝑟𝜋

2𝑡𝑝
. If tp=0.5 s, the asymptote is at 

𝑖𝑐𝑟

0.32
[
1

𝑠
]. The location of the dashed lines for the other three cases are determined numerically. 

For real earthquake records in most cases a vertical line at fmin is considered to be a reasonable 

approximation, which is shown in Fig. 47b. Note that for higher ap-s transformed OAS diverges from the 

vertical line, and hence it might be argued that a better simplified transformed OAS can be obtained by 

one vertical and one inclined straight line (see section 5.3.5). Nevertheless, the single vertical line is 

definitely a safe and simple approximation, and hence it is the recommended approach. 

 



  Analysis and design of rocking mechanisms 

Overturning of columns for base excitation 40 

 

Fig. 46 The transformed OAS for simple signals (tp=0.5 s) 

 

 

Fig. 47 An example of the characteristic OAS (a) and the transformed characteristic OAS (b). Simplified 

OAS are given with dashed line 

To strengthen this statement the convex hulls of OAS-s of the individual earthquake records and their 

transformed OAS were determined (Fig. 48). These convex hulls are presented in Fig. 49a and b for FF 

and NF earthquakes. For the sake of comparison, each curve was normalized by its lowest horizontal 

value. 
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Fig. 48 An example OAS (a) and transformed OAS (b) with the corresponding convex hulls  

 

 

Fig. 49 Convex hulls of transformed OAS for far field (a) and near field (b) earthquakes normalized by 

their lowest horizontal coordinate 

It is recommended that the transformed OAS is approximated by a horizontal and vertical line, by the 

simplified transformed OAS. The horizontal location of the vertical line (Fig. 47b) is given as a function 

of the normalized critical impulse Eq. (18) 

 𝑓𝑚𝑖𝑛 =
𝑖cr
𝑡I
=
1

𝑡I
√

2

1 + cos 𝛿
≈
1

𝑡I
, 

(20) 

where tI is the ‘replacement impulse duration’. Its value can be determined numerically, using the 

transformed OAS of real earthquake records. 

It is recommended to represent earthquakes by two parameters: ap and tI. 

On the basis of tI the simplified OAS can be calculated as (Eq. (19)): 
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𝑎𝑝

𝑎𝑝,min
= max {

𝑖cr
𝑡I

1

𝑝
, 1} ≈ max {

1

𝑡I

1

𝑝
, 1}. (21) 

For the 100 investigated earthquakes we determined numerically the tI values, their histograms are given 

in Fig. 50. The maximum values are tI=0.686 and tI=0.961 for far field and near field records, 

respectively. The corresponding records (FF-38 and NF-52) belong to the Chi-Chi earthquake (1999, 

Taiwan, CHICHI/CHY101-N and CHICHI/TCU102-N). The second biggest values are: tI=0.540 for 

Landers (1992, LANDERS/YER360) and tI=0.671 for Kocaeli, Turkey (1999, YARIMCA/60). 

tI values for all the investigated earthquakes are given in Table 4 and Table 5. 

 

 

Fig. 50 Histograms of replacement impulse durations tI for the FF (a) and the NF (b) records. 

Table 4 The investigated FF earthquakes and the calculated pulse durations. 

ID Year Event Station Direction tp [s] 
tI [s] 

H/B=12 
tI' 

H/B=12 
β 

H/B=12 

FF-1 1994 Northridge Beverly Hills - Mulhol 009 0.405 0.266 0.387 
1.744 

FF-2 1994 Northridge Beverly Hills - Mulhol 279 0.367 0.360 0.538 1.467 

FF-3 1994 Northridge Canyon Country - WLC 000 0.269 0.302 0.479 1.407 

FF-4 1994 Northridge Canyon Country - WLC 270 0.219 0.285 0.347 1.933 

FF-5 1999 Duzce, Turkey Bolu 000 0.134 0.194 0.207 7.814 

FF-6 1999 Duzce, Turkey Bolu 090 0.241 0.203 0.287 1.203 

FF-7 1999 Hector Mine Hector 000 0.251 0.304 0.352 3.495 

FF-8 1999 Hector Mine Hector 090 0.228 0.299 0.434 2.117 

FF-9 1979 Imperial Valley Delta 262 0.293 0.473 0.624 3.800 

FF-10 1979 Imperial Valley Delta 352 0.294 0.421 0.643 3.283 

FF-11 1979 Imperial Valley El Centro Array #11 140 0.145 0.289 0.661 1.694 

FF-12 1979 Imperial Valley El Centro Array #11 230 0.185 0.228 0.330 3.086 

FF-13 1995 Kobe, Japan Nishi-Akashi 000 0.215 0.226 0.350 1.583 

FF-14 1995 Kobe, Japan Nishi-Akashi 090 0.187 0.225 0.276 2.211 

FF-15 1995 Kobe, Japan Shin-Osaka 000 0.330 0.305 0.462 1.864 

FF-16 1995 Kobe, Japan Shin-Osaka 090 0.331 0.367 0.445 2.811 

FF-17 1999 Kocaeli, Turkey Duzce 180 0.408 0.409 0.435 14.138 

FF-18 1999 Kocaeli, Turkey Duzce 270 0.292 0.376 0.665 2.217 

FF-19 1999 Kocaeli, Turkey Arcelik 000 0.104 0.158 ~∞ 1.200 
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FF-20 1999 Kocaeli, Turkey Arcelik 090 0.294 0.412 ~∞ 2.720 

FF-21 1992 Landers Yermo Fire Station 270 0.438 0.483 0.630 4.832 

FF-22 1992 Landers Yermo Fire Station 360 0.425 0.540 0.672 4.543 

FF-23 1992 Landers Coolwater LN 0.172 0.315 0.381 1.991 

FF-24 1992 Landers Coolwater TR 0.300 0.259 0.322 1.856 

FF-25 1989 Loma Prieta Capitola 000 0.189 0.274 0.345 1.458 

FF-26 1989 Loma Prieta Capitola 090 0.208 0.272 0.331 1.573 

FF-27 1989 Loma Prieta Gilroy Array #3 000 0.155 0.242 0.310 1.488 

FF-28 1989 Loma Prieta Gilroy Array #3 090 0.200 0.242 0.350 2.476 

FF-29 1990 Manjil, Iran Abbar L 0.148 0.270 0.602 1.703 

FF-30 1990 Manjil, Iran Abbar T 0.145 0.405 0.606 2.020 

FF-31 1987 Superstition Hills El Centro Imp. Co. 000 0.263 0.290 0.320 7.286 

FF-32 1987 Superstition Hills El Centro Imp. Co. 090 0.250 0.403 0.772 2.838 

FF-33 1987 Superstition Hills Poe Road (temp) 270 0.165 0.189 0.346 1.492 

FF-34 1987 Superstition Hills Poe Road (temp) 360 0.193 0.281 0.324 5.077 

FF-35 1992 Cape Mendocino Rio Dell Overpass 270 0.267 0.249 0.365 1.431 

FF-36 1992 Cape Mendocino Rio Dell Overpass 360 0.215 0.175 0.264 0.945 

FF-37 1999 Chi-Chi, Taiwan CHY101 E 0.520 0.413 0.561 4.733 

FF-38 1999 Chi-Chi, Taiwan CHY101 N 0.654 0.686 1.036 3.736 

FF-39 1999 Chi-Chi, Taiwan TCU045 E 0.198 0.185 0.211 2.690 

FF-40 1999 Chi-Chi, Taiwan TCU045 N 0.209 0.165 0.318 1.335 

FF-41 1971 San Fernando LA - Hollywood Stor 090 0.224 0.503 0.897 1.841 

FF-42 1971 San Fernando LA - Hollywood Stor 180 0.155 0.312 0.371 2.663 

FF-43 1976 Friuli, Italy Tolmezzo 000 0.131 0.165 0.204 1.371 

FF-44 1976 Friuli, Italy Tolmezzo 270 0.267 0.228 0.309 1.256 

 

Table 5 The investigated NF earthquakes and the calculated pulse durations  

ID Year Event Station Direction tp [s] 
tI [s] 

H/B=12 
tI' 

H/B=12 
β 

H/B=12 

Tp/2 (Baker 
2007) 

Tp/2 
(Mimoglou 
et al. 2014) 

NF-1 1976 Gazli, USSR Karakyr 000 0.157 0.247 0.332 
2.500 

- 

 

NF-2 1976 Gazli, USSR Karakyr 090 0.163 0.163 0.270 1.694 -  

NF-3 1979 Imperial Valley Bonds Corner 140 0.206 0.223 0.290 1.978 -  

NF-4 1979 Imperial Valley Bonds Corner 230 0.173 0.237 0.341 1.134 -  

NF-5 1979 Imperial Valley Chihuahua 012 0.208 0.344 0.568 2.022 -  

NF-6 1979 Imperial Valley Chihuahua 282 0.285 0.362 0.539 1.910 -  

NF-7 1979 Imperial Valley Chihuahua DWN 0.070 0.111 0.120 2.552 -  

NF-8 1979 Imperial Valley El Centro Array #6 230 0.483 0.392 0.569 4.794 1.90 1.97 

NF-9 1979 Imperial Valley El Centro Array #7 140 0.317 0.461 0.608 3.032 -  

NF-10 1979 Imperial Valley El Centro Array #7 230 0.382 0.414 0.429 17.625 2.10 1.72 

NF-11 1980 Irpina, Italy Sturno 000 0.411 0.443 0.632 2.539 -  

NF-12 1980 Irpina, Italy Sturno 270 0.332 0.462 0.654 3.071 1.55 1.32 

NF-13 1985 Nahanni, Canada Site 1 010 0.085 0.088 0.095 1.976 -  

NF-14 1985 Nahanni, Canada Site 1 280 0.081 0.089 0.098 2.676 -  

NF-15 1985 Nahanni, Canada Site 2 240 0.082 0.100 0.130 1.752 -  

NF-16 1985 Nahanni, Canada Site 2 330 0.188 0.152 0.266 1.224 -  

NF-17 1987 Superstition Hills-02 Parachute Test Site 225 0.655 0.570 1.168 2.033 1.15  

NF-18 1987 Superstition Hills-02 Parachute Test Site 315 0.283 0.323 0.594 1.909 -  

NF-19 1989 Loma Prieta Bran 000 0.264 0.238 0.312 1.949 -  

NF-20 1989 Loma Prieta Bran 090 0.227 0.196 0.321 1.168 -  

NF-21 1989 Loma Prieta Corralitos 000 0.206 0.171 0.613 0.919 -  

NF-22 1989 Loma Prieta Corralitos 090 0.279 0.225 0.264 2.259 -  

NF-23 1989 Loma Prieta Saratoga - Aloha Ave 000 0.184 0.199 0.221 3.502 2.25 3.24 

NF-24 1989 Loma Prieta Saratoga - Aloha Ave 090 0.189 0.317 0.358 5.012 -  

NF-25 1992 Erzica, Turkey Erzican EW 0.285 0.345 0.415 3.027 -  
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NF-26 1992 Erzica, Turkey Erzican NS 0.617 0.423 0.720 2.383 1.35 1.21 

NF-27 1992 Cape Mendocino Cape Mendocino 000 0.155 0.080 0.083 7.916 -  

NF-28 1992 Cape Mendocino Cape Mendocino 090 0.099 0.081 0.081 77.630 -  

NF-29 1992 Cape Mendocino Petrolia 000 0.228 0.221 0.264 2.496 -  

NF-30 1992 Cape Mendocino Petrolia 090 0.299 0.244 0.298 2.331 1.50 1.37 

NF-31 1992 Landers Lucerne 260 0.137 0.246 0.251 56.932 2.55 2.29 

NF-32 1992 Landers Lucerne 345 0.064 0.110 0.122 1.772 -  

NF-33 1994 Northridge Sepulveda VA Hospital 270 0.323 0.241 0.334 1.361 -  

NF-34 1994 Northridge Sepulveda VA Hospital 360 0.169 0.196 0.223 2.549 -  

NF-35 1994 Northridge 17645 Saticoy St 090 0.250 0.403 0.513 2.067 -  

NF-36 1994 Northridge 17645 Saticoy St 180 0.416 0.447 0.707 1.633 -  

NF-37 1994 Northridge 
Rinaldi Receiving 
Station 228 0.450 0.270 0.401 2.390 0.60 

0.55 

NF-38 1994 Northridge 
Rinaldi Receiving 
Station 318 0.400 0.387 0.841 1.140 - 

 

NF-39 1994 Northridge 
Sylmar - Olive View 
Med FF 090 0.285 0.289 0.425 1.897 - 

 

NF-40 1994 Northridge 
Sylmar - Olive View 
Med FF 360 0.282 0.257 0.438 1.756 1.55 

1.28 

NF-41 1999 Kocaeli, Turkey Izmit 090 0.254 0.252 0.454 3.085 -  

NF-42 1999 Kocaeli, Turkey Izmit 180 0.288 0.376 0.786 1.795 -  

NF-43 1999 Kocaeli, Turkey Yarimca 060 0.703 0.671 1.703 3.249 -  

NF-44 1999 Kocaeli, Turkey Yarimca 150 0.478 0.443 0.554 6.490 -  

NF-45 1999 Chi-Chi, Taiwan TCU065 E 0.344 0.381 0.553 4.656 -  

NF-46 1999 Chi-Chi, Taiwan TCU065 N 0.352 0.504 0.840 3.697 2.85 2.37 

NF-47 1999 Chi-Chi, Taiwan TCU067 E 0.439 0.461 1.107 2.464 -  

NF-48 1999 Chi-Chi, Taiwan TCU067 N 0.485 0.545 0.742 3.564 -  

NF-49 1999 Chi-Chi, Taiwan TCU084 E 0.369 0.342 0.475 1.827 -  

NF-50 1999 Chi-Chi, Taiwan TCU084 N 0.312 0.337 0.552 2.290 -  

NF-51 1999 Chi-Chi, Taiwan TCU102 E 0.834 0.583 0.987 4.994 -  

NF-52 1999 Chi-Chi, Taiwan TCU102 N 1.176 0.961 2.117 3.982 4.85 4.65 

NF-53 1999 Duzce, Turkey Duzce 180 0.298 0.500 0.671 3.600 -  

NF-54 1999 Duzce, Turkey Duzce 270 0.335 0.466 0.585 4.733 -  

NF-55 2002 Denali, Alaska 
TAPS Pump Station 
#10 047 0.849 0.649 0.829 4.744 - 

 

NF-56 2002 Denali, Alaska 
TAPS Pump Station 
#10 317 0.565 0.547 ~∞ 1.740 - 

 

 

5.3.3 Generalization for arbitrary symmetrical mass distribution 

In the previous sections it was assumed that the mass of the block is uniformly distributed over a 

rectangular area. Note, however, that the derived expressions can be applied for arbitrary, symmetrical 

mass distribution. We define a dimensionless α parameter in the following way (see Eq. (13)): 

 
𝛩 = 𝛼𝑚𝑅2 (22) 

where Θ is the mass moment of inertia about the corner point where the rotation occurs, m is the total 

mass and R is the distance between the center of mass and the corner point. In case of uniform mass 

distribution α=4/3 (see Eq. (13)). Three examples are shown in Fig. 51. Housner’s approximate 

expression for the natural period of vibration Eq. (14), the expression of the critical impulse Eq. (17) are 

directly applicable to these cases if the proper value of α is introduced, while the expression of ap,min Eq. 

(3) does not change. We may also observe that all performed calculations for OAS and transformed OAS 

are also valid, if the proper value of α is used.  
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Fig. 51 Values of α for different mass distributions to calculate the mass moment of inertia in Eq. (22) 

 

5.3.4 Numerical example 

To demonstrate the simplicity of the recommended procedure we give an example in which we determine 

the required width of a pier at an undefined location. 

The required safety against overturning is not the subject of this paper. Here we take ag=0.14 g as the 

PGA, and tI=0.7 s as the design replacement impulse duration. (The latter one is the highest value of the 

44 investigated FF records.).  

(a) Determine the necessary width (Ba) of an H=12 m solid pier!  

(b) Determine the necessary width (Bb), if the mass is at the top of the pier and the weight of the 

pier is neglected!  

Note that for Ba =1.68 m and Bb =3.36 m we have 𝑎𝑝 = 𝑎p,min, and the pier will not move.  

The pier can be, however, narrower. Eq. (21) for the two cases are:  
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(23) 

Eqs (23) are nonlinear, which result in Ba =1.299 m and Bb =2.122 m. 

If the blocks are slender (cos𝛿 ≈ 1), the above expressions simplify to 

 𝐵𝑎 ≈ √𝐻𝑡I
𝑎𝑔

√𝑔
√
3

2
,      𝐵𝑏 ≈ √𝐻𝑡I
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√𝑔
2, 

(24) 

which results in Ba =1.302 m and Bb =2.127 m. 

 

5.3.5 Discussion 

The replacement impulse duration 

It is worthwhile to compare the calculated replacement impulse durations to the parameters of the main 

pulse lobes of real earthquake records. To reach this goal we made a very simple calculation shown 

below. Overturning may be caused by either a large acceleration (amax) or by a large impulse (Imax), the 

corresponding pulses are shown by shaded areas in Fig. 52a. (They may coincide.) To capture both we 

defined a single pulse as a simple sine curve with amax and Imax (Fig. 52b). The fullness of a sine curve is 

F=0.64, and its duration is: 

 
𝑡𝑝 =

𝐼𝑚𝑎𝑥
𝐹𝑎𝑚𝑎𝑥

. (25) 
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Fig. 52 An acceleration record and the definition of amax and Imax,(a), and the replacement sine curve (b). 

The record is the 1979, Imperial Valley – Bonds Corner/140 (NF-3) 

The tp values corresponding to each earthquakes are given in Table 4 and Table 5. We investigated the 

correlation between tI and tp, (Fig. 53), and found high correlation, higher for NF than for FF records. 

Interestingly, linear regression gives approximately 𝑡I ≈ (0.8 ÷ 1)𝑡𝑝. Note that for simple signals (Fig. 

46 b-d) we obtain 𝑡I ≈ (0.75 ÷ 0.9)𝑡𝑝. 

 

  

Fig. 53 The corresponding tI and tp values for the FF (a) and the NF (b) records. The correlation 

coefficients are 0.72 and 0.90 for FF and NF, respectively 

 

We may observe that these ‘replacement’ durations are much shorter than those which were defined in a 

more sophisticated way by researchers (Mavroeidis and Papageorgiou 2003; Baker 2007; Vassiliou and 

Makris 2011; Mimoglou et al. 2014) for NF fault-parallel records, on the basis of the pulse durations in 

the velocity record (see in Table 5). We also compared those values with tI, however, they seem to be 

uncorrelated. 

 

Representation of the results 

In Fig. 54 the results are presented in four different ways. The solid line represents the accurate solution, 

while the dashed line the simple approximation (Eq. (21)). (Note that ap,min is proportional to the inverse 

of the slenderness and p depends on the element size.) For ap>ap,min the approximate relationship between 

ap,min and p is linear: 

 
𝑎𝑝,𝑚𝑖𝑛 = 𝑎p𝑡I𝑝. (26) 

Note that for an infinitely short impulse the accurate expression is also linear (Eq. (17)): 

 
𝑎𝑝,𝑚𝑖𝑛 = 𝐼cr𝑝. (27) 
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Fig. 54 Representation of the overturning acceleration spectra for an arbitrary pulse 

Improved approximation 

In Fig. 55 we present our proposed solution Eq. (21) for a real earthquake record. For the sake of 

comparison to curves presented by other researchers (Zhang and Makris 2001; Makris and Konstantinidis 

2003; Makris and Vassiliou 2012; Dimitrakopoulos and DeJong 2012; Dimitrakopoulos and Fung 2016), 

we give the results also as a function of 1/p (Fig. 55c). Note that the contents of the three plots (a-c) are 

identical, the difference is only in the presentation. 

 

Fig. 55 OAS (a), transformed OAS (b) and OAS as a function of 1/p (c) for the Northridge earthquake 

compared to simplified curves (tI=0.27, tI' =0.40, β=2.39) 
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As we mentioned before, instead of the vertical line in Fig. 55b (Fig. 37b, Fig. 47b), we may approximate 

the transformed OAS by an inclined line, which can be defined by two parameters: tI' and the slope of the 

inclined line, β. By so doing we arrive at the following expression: 

 
𝑝
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𝑎𝑝,𝑚𝑖𝑛
=

𝑎𝑝

𝑎𝑝,𝑚𝑖𝑛

1

𝛽
+
1

𝑡′I
 (28) 

which results in 

 

𝑎𝑝
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1
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1

𝑝 − 1/𝛽
; 1} (29) 

For most cases this equation gives a rather good approximation (marked by blue dashed lines in Fig. 55), 

however, for the price of having two parameters instead of only one. Finally, to achieve a better fit, we 

may approximate the transformed OAS by a vertical and an inclined line, which results in 

 

𝑎𝑝
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1

𝑡I

1

𝑝
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1

𝑡′I
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𝑝 − 1/𝛽
; 1}. (30) 

Comparisons for all the 100 investigated earthquake records are presented on our webpage 

(http://www.szt.bme.hu/files/TherT/public_Eq21Eq29_Ther_Thesis.zip). Eq. (30) is always very accurate 

(if ap/ap,min<12), while Eq. (21) provides reasonable results, if ap<4-6ap,min. Both approximations are 

conservative in the whole parameter range. 

 

Comparison with the results obtained from single pulses 

We compared our results with those obtained from realistic, single pulses. In Fig. 56a-c OAS-s are 

presented for three earthquakes, together with OAS of pulses determined by Makris and Vasilliou (in 

Makris and Vassiliou (2012) see Fig. 4), and our simplified curves (Eqs. (21) and (29)). We may observe 

that in Fig. 56a the results obtained from the (orange) replacement signal are not conservative, while in 

Fig. 56b, c they are very conservative. 

 

 

Fig. 56 The OAS of three different earthquakes compared to the results of single pulses (see Fig. 4 in 

(Makris and Vassiliou 2012)) and to our simplified equations (Eqs. (21) and (29)) 

Results for a given earthquake (see Fig. 56c) are also compared to the solution of Voyagaki et al. (2013a). 

In Fig. 57 the recommended solution of Voyagaki et al. (2013a) is presented, where the length of the 

http://www.szt.bme.hu/files/TherT/public_Eq21Eq29_Ther_Thesis.zip
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triangular signal was taken to be equal to Tp/2=0.6 s (Baker 2007). We may observe that Voyagaki’s 

solution is unconservative. 

 

Fig. 57 OAS for the Northridge (NF-37) earthquake compared to the results of Voyagaki et al. (2013a) 

The replacement signals were determined in the literature by analyzing the shape of earthquake records 

(Mavroeidis and Papageorgiou 2003; Baker 2007; Vassiliou and Makris 2011; Mimoglou et al. 2014). An 

alternative approach can be given considering the OAS instead of the earthquake record. Two examples 

are shown in Fig. 58. In both figures the envelope of the OAS of two signals are presented. The signals 

are given in Fig. 6d and g for Fig. 58a, and in Fig. 6e and f for Fig. 58b. Note that duration of the signals 

were determined not directly from the earthquake record, but on the basis of the OAS of the earthquake. 

We failed to find proper representations of earthquakes by using only one, simple signal; rather at least 

two signals had to be used. 

One might argue that these shapes or durations have no physical justification, which might be true, 

however, their responses will be close to that of the earthquake, at least for overturning. Our aim was to 

demonstrate that with a few signals a reasonably good curve-fit can be achieved. 

 

Fig. 58 The OAS for the Northridge (NF-37) earthquake compared to the results of two replacement 

signals (a). The envelope of the Erzican (NF-26) earthquake, using the replacement signals of Makris and 

Vassiliou (2012) (b) 
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5.4 Summary 

The response spectrum analysis (RSA) cannot be used for the analysis and design of rigid blocks for 

overturning because the period of vibration of rocking mechanisms depends strongly on the amplitude of 

the rocking block.  

The main finding is that the overturning acceleration spectrum (OAS) can be used to represent the effect 

of earthquakes for the analysis of overturning of rigid blocks. A characteristic OAS can be determined by 

the statistical evaluation of time history analyses of rocking mechanisms for earthquake records at a given 

location.  

Our second important finding, based on the analyses of rigid blocks for 100 earthquake records, is that the 

OAS can be characterized reasonably well by one parameter: the replacement impulse duration tI, which 

plays a similar role as the TB, TC, etc. points of the (pseudo) acceleration response spectrum of the RSA. If 

tI and the maximum acceleration ap are given for a location we can determine whether a column is safe 

against overturning simply by checking the following inequalities (Eq.(21)): 

 
𝑎𝑝 ≤ 𝑎p,min

1

𝑡I
√𝛼

𝑅

𝑔
  or  𝑎𝑝 ≤ 𝑎p,min (31) 

(We may obtain a better approximation by using additional parameters t’p and β (see Table 4, Table 5 and 

Eq. (29).)  

It was also demonstrated that for the analysis of overturning of rigid blocks the effect of complex 

earthquakes can be reasonably well represented by the envelope of a few (in the examples two) simple 

signals (Fig. 58), where the durations of the signals are determined from the OAS (or from the simplified 

OAS). This procedure is analogous to the time history analysis of standards (e.g. EC8), where earthquake 

records are selected to match a target response spectrum curve. 

The calculation of the replacement impulse duration tI for a specific site is not the subject of our research. 

Nevertheless, results for 100 individual records are presented. We must emphasize that tI may depend 

strongly on the soil parameters above the bedrock. 
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Chapter 6 Conclusion – New results 

Housner derived a model for rocking mechanisms, which gives the change of angular velocities (and the 

energy loss) during impact (Housner 1963). This model is widely used (Augusti and Sinopoli 1992; 

Lipscombe and Pellegrino 1993; Makris and Konstantinidis 2003; Prieto et al. 2004; Makris and 

Vassiliou 2012; Dimitrakopoulos and DeJong 2012; Kounadis 2015) even though experiments show 

lower energy loss. Several researchers investigated this discrepancy in the last five decades (Aslam et al. 

1980; Yim et al. 1980; Lipscombe and Pellegrino 1993; Anooshehpoor and Brune 2002; Ma 2010; 

Elgawady et al. 2011), however no reasonable physical explanations were given, and besides suggesting 

to use a fudge factor (Priestley et al. 1978; Aslam et al. 1980; Lipscombe and Pellegrino 1993; 

Anooshehpoor and Brune 2002; Elgawady et al. 2011) no numerical model was recommended. 

Thesis 1. A new physical explanation was given for the difference between the results of Housner’s 

model and the experiments: Impact does not occur at the edges of the block, rather, due to the 

unevenness of the surface, with consecutive impacts (Ther and Kollár 2017d). 

1.1 The above hypothesis was verified by experiments on granite blocks. When two steel wires 

were glued to the edges the experiments agreed well with Housner’s  prediction, while gave 

lower energy loss for three wires, or when no wires were introduced. 

1.2 For numerical calculations it was suggested that impact is modelled by assuming two 

consecutive impacts, the first at the middle, and the second at the edge. This model gives 

similar results as most of the experiments reported in the literature (Ogawa 1977; Aslam et 

al. 1980; Prieto-Castrillo 2007). 

 

Impact models are available for single blocks (Housner 1963) and two-block columns (Psycharis 1990; 

Spanos et al. 2001), no model is available for multi-block columns with more than two blocks. 

Thesis 2. A new impact model is developed for 2D multi-block columns, which enable us to 

calculate the change of velocities during impacts. The key of the model is that in formulating the 

problem at the closing interface both the clockwise and counter-clockwise rotations are taken into 

account, even though these motions exclude each other (Ther and Kollár 2017b). For one or two 

blocks this new model simplifies to those of (Housner 1963) and (Psycharis 1990). 

 

After impact of multi-block columns several different opening configurations (crack-patterns) may occur. 

These were investigated only for two-block columns (Psycharis 1990; Spanos et al. 2001). More 

importantly, the possibility of different kinematically admissible opening configurations were not even 

mentioned. 

Thesis 3. A model was developed to investigate the actual opening scheme of multi-block columns 

during impact (Ther and Kollár 2017b). The kinematically admissible opening configurations are 

chosen by investigating the signs of post-impact velocities, and then the one is considered, where 

the kinetic energy is the highest (the energy loss is the lowest). The model was validated by 

experiments. 

 

When an interface of multi-block columns opens up several different opening configurations may occur. 

These were not investigated before. 

Thesis 4. It was shown that simple opening of an interface where the thrust line is outside of the 

cross-section may be numerically unstable. A model was developed to investigate the actual 

opening configuration of multi-block columns (Ther and Kollár 2017b). The kinematically 

admissible configurations are chosen by investigating the signs of displacements. The model was 

validated by experiments. 
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Mechanical models to calculate the motion of multi-block columns are available only for given crack-

patterns (Prieto-Castrillo 2007). 

Thesis 5. A new model is developed (Ther and Kollár 2017b) for rocking of multi-block columns, 

which contains an opening and an impact model, together with the improved Housner’s model 

presented in Thesis 1.2. 

5.1 The model was verified by experiments. 

5.2 Investigating columns for pulse-like signals and real earthquake records, it was found that 

monolithic blocks are more vulnerable for overturning than multi-block structures. 

5.3 In contradiction to monolithic blocks, it was found that for multi-block columns the 

dissipation of energy during impact plays an important role. 

 

For the design of blocks for single pulse-like signals the overturning curve (OC) was introduced (Housner 

1963). 

Thesis 6. The OC was generalized for earthquake records, and the overturning acceleration 

spectrum (OAS) was introduced (Ther and Kollár 2017c). In principle a characteristic OAS can 

be determined by the statistical evaluation of time history analyses of rocking mechanisms for 

earthquake records at a given location. 

6.1 Based on the analyses of rigid blocks for 100 earthquake records, it was found that the OAS 

can be characterized well by one parameter: the “replacement impulse duration”. It was also 

shown that the replacement impulse durations and the actual impulse durations of the main 

pulses of earthquake records are highly correlated. 

6.2 A simple design equation was recommended to determine the safety of structures subjected 

to earthquakes for overturning. 

 

Future works 

As an extension of our column model, we are planning to develop a multi-block 2D arch model. In the 

literature, the masonry arch is investigated as a four-hinge mechanism for pulses and earthquake 

excitations (De Lorenzis 2007; DeJong et al. 2008; DeJong 2009). This system is a single degree of 

freedom structure. 

Due to our preliminary calculations the locations and the number of open interfaces change during the 

motion of the structure which might influence the results. We plan to explore this question and to develop 

OAS-s for arches. 
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Appendices 

Appendix A. Impact when the two axes of rotation are at arbitrary locations 

Here, we give the simple extension of Housner’s model, when the location of the axis of rotation before impact (P1) 

and after the impact (P2) are not at the edges of the block but at arbitrary positions (Fig. 59). Immediately before 

impact (rotation around axis P1) the angular momentum about axis P2 is 

 

Fig. 59 Housner’s model for a rocking block if  rotation occurs around two axes of arbitrary position  

 

 
𝐿b = 𝑚𝜔𝑏 (

(2𝑏)2

12
+
(2ℎ)2

12
+ ℎ2 + 𝑥1𝑥2) (A1)  

while after impact (rotation around axis P2) the moment of momentum about axis P2 is: 

 
𝐿a = 𝑚𝜔𝑎 (

(2𝑏)2

12
+
(2ℎ)2

12
+ ℎ2 + 𝑥2

2) (A2)  

where m is the mass of the block, and x1 and x2 are the locations of the axes measured from the middle of the edge. 

From the condition that La = Lb, we obtain the following expression for the angular velocity: 

 
𝜔a = 𝜇𝜔b, 𝜇 =

2ℎ2 + 0.5𝑏2 + 1.5𝑥1𝑥2

2ℎ2 + 0.5𝑏2 + 1.5𝑥2
2  (A3)  

For x1 = –b and x2 = b Eqs.(1) and (A3) are identical.  

If the corners are cut (Fig. 59), and we set x1= –b2 and x2= b2, Eq.(A3) results in 

 
𝜔a = 𝜇Hous𝜔b, 𝜇HousC =

2ℎ2 + 0.5𝑏2 − 1.5𝑏2
2

2ℎ2 + 0.5𝑏2 + 1.5𝑏2
2 (A4)  

Now we apply Eq.(A3) in two steps. First, x1 = –b2 and x2 = 0, i.e. the block rotates at the left corner and then impact 

occurs at the middle. This gives: 

 
𝜔a1 = 𝜔b1 (A5)  

and second: x1 = 0 and x2 = b2, i.e. the  block rotates at the middle and then impact occurs at the right corner: 

 
𝜔a2 = 𝜔b2

2ℎ2 + 0.5𝑏2

2ℎ2 + 0.5𝑏2 + 1.5𝑏2
2 

(A6)  

By setting  ωa = ωa2, ωb = ωb1, ωa1 = ωb2,  from Eqs.(A5) and (A6) we obtain an expression for the change in the 

angular velocity, if rocking occurs in two steps, according to the geometry shown in Fig. 13b: 

 
𝜔a = 𝜇HousC

2imp
𝜔b, 𝜇HousC

2imp
=

2ℎ2 + 0.5𝑏2

2ℎ2 + 0.5𝑏2 + 1.5𝑏2
2 (A7)  

If the width of the block is identical to the width of the base (b= b2) Eq.(A7) simplifies to 

 𝜔a = 𝜇HousC
2imp

𝜔b, 𝜇HousC
2imp

=
2ℎ2 + 0.5𝑏2

2ℎ2 + 2𝑏2
 

(A8)  
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Appendix B. Model of impact 

Here the inelastic impact at a single point is discussed (Housner 1963), when the bumped elements may 

move together after impact. A structure has m degrees of freedom. The equation of motion is (Chopra 

1995) 

 
𝐊𝐮 + 𝐂𝐮̇ +𝐌𝐮̈ = 𝐩, 

(B1)  

where dot denotes derivation with respect to time, K, M and C are the 𝑚 ×𝑚 stiffness, mass and 

damping matrices, respectively. We assume that before impact the displacement vector is 𝐮before while 

after impact it is denoted by 𝐮after. Impact occurs in a short time between t0 and t0+Δt. Eq.(B1) is 

integrated over this period 

 
𝐊 ∫ 𝐮𝑑𝑡

𝑡0+∆𝑡

𝑡0

+ 𝐂 ∫ 𝐮̇𝑑𝑡

𝑡0+∆𝑡

𝑡0

+𝐌 ∫ 𝐮̈𝑑𝑡

𝑡0+∆𝑡

𝑡0

= ∫ 𝐩𝑑𝑡.

𝑡0+∆𝑡

𝑡0

 
(B2)  

During impact the change in velocity is ∆𝐯 = ∫ 𝐮̈𝑑𝑡
𝑡0+∆𝑡

𝑡0
, the impulse is ∆𝐈 = ∫ 𝐩𝑑𝑡

𝑡0+∆𝑡

𝑡0
, while the first 

two terms tend to zero with Δt. From Eq.(B2) when ∆𝑡 → 0 we obtain 

 
𝐌∆𝐯 = ∆𝐈. 

(B3)  

It is assumed that impact occurs at the ith element of the displacement vector, i.e. 𝑢̇𝑖
after = 0, and  

 
∆𝑣𝑖 = −𝑢̇𝑖

before. 
(B4)  

The elements of ∆𝐈 also tend to zero with ∆𝑡, except the ith one, since high contact forces arise during 

impact, and Eq.(B3) has the following form: 

 

[
 
 
 
 
 
 
𝑚1,1 𝑚1,2 … … … … 𝑚1,m
𝑚2,1 𝑚2,2      

⋮   ⋱     
⋮    ⋱    
⋮     ⋱   
⋮      ⋱  

𝑚m,1      𝑚m,m]
 
 
 
 
 
 

{
  
 

  
 
∆𝑣1
∆𝑣2
⋮
∆𝑣𝑖
⋮
⋮

∆𝑣𝑚}
  
 

  
 

=

{
  
 

  
 
0
⋮
0
∆𝐼𝑖
0
⋮
0 }
  
 

  
 

. 
(B5)  

Disregarding the ith row of the above equation, and solving Eq.(B5) we obtain 

 

{
 
 

 
 
∆𝑣1
⋮

∆𝑣𝑖−1
∆𝑣𝑖+1
⋮

∆𝑣𝑚 }
 
 

 
 

=

[
 
 
 
 
 
𝑚1,1 … 𝑚1,i−1 𝑚1,i+1 … 𝑚1,m
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑚i−1,1 … 𝑚i−1,i−1 𝑚i−1,i+1 … 𝑚i−1,m

𝑚i+1,1 … 𝑚i+1,i−1 𝑚i+1,i+1 … 𝑚i+1,m

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑚m,1 … 𝑚m,i−1 𝑚m,i+1 … 𝑚m,m ]

 
 
 
 
 
−1

{
 
 

 
 
𝑚1,𝑖
⋮

𝑚𝑖−1,𝑖

𝑚𝑖+1,𝑖

⋮
𝑚𝑚,𝑖 }

 
 

 
 

∆𝑣𝑖 , 
(B6)  

while ∆𝑣𝑖 is given by Eq.(B4). 

It may be observed that applying Eq.(B6) for one rectangular block the result is identical to that of 

Housner (Housner 1963). When the size of the block is 2h and 2b, the mass matrix is 

 
𝐌 = [

Θ0 Θ1
Θ1 Θ0

],   Θ0 =
4

3
𝑚(ℎ2 + 𝑏2),   Θ1 =

4

3
𝑚 (ℎ2 −

1

2
𝑏2). 

(B7)  

When 𝜑̌1 is closing and 𝜑̂1is opening, the change in velocity (Eq.(B6)): 

 
𝜑̇̂1 = Θ0

−1Θ1𝜑̇̌1 =
Θ1
Θ0
𝜑̇̌1 =

1 − 0.5(𝑏 ℎ⁄ )2

1 + (𝑏 ℎ⁄ )2
𝜑̇̌1 

(B8)  
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which agrees with Housner’s results. 

Appendix C. Transformation of the equation of motion 

The equation of motion of an elastic system with n degrees of freedom assuming small displacements is 

 
𝐊𝐮 + 𝐂𝐮̇ + 𝐌𝐮̈ = 𝐩 

(C1)  

where u and p are the vector of displacements and loads with n elements, K, C and M are the 𝑛 × 𝑛 

stiffness, damping and mass matrices, respectively. 

It is assumed that some of the displacements are not independent (e.g. parts of the structures – as rigid 

bodies – move together) and hence the actual degrees of freedom, denoted by m is smaller than n. The 

vector of the independent displacements is denoted by 𝐮̃, and (for small displacements) the transformation 

between u and 𝐮̃ is given by matrix B: 

 
𝐮⏟

(𝑛×1)

= 𝐁⏟
(𝑛×𝑚)

𝐮̃⏟
(𝑚×1)

. (C2)  

The strain energy and the kinetic energy of the system can be written as 

 
𝑈 =

1

2
𝐮T𝐊𝐮 =

1

2
𝐮̃T 𝐁T𝐊𝐁⏟  

𝐊̃

𝐮̃, (C3)  

 
𝐸kin =

1

2
𝐮̇T𝐌𝐮̇ =

1

2
𝐮̇̃T 𝐁T𝐌𝐁⏟  

𝐌̃

𝐮̇̃, 
(C4)  

where 𝐊̃ and 𝐌̃ are the reduced stiffness and mass matrices. The load vector of the motion must have the 

same length as 𝐮̃, let us denote it by 𝐩̃. 

The work of external loads on the corresponding displacements must be identical for the original and for 

the reduced system: 

 
𝑊 = 𝑊,̃    𝑊 = 𝐮T𝐩 = 𝐮̃T𝐁T𝐩,   𝑊̃ = 𝐮̃T𝐩, 

(C5)  

hence 

 
𝐩 = 𝐁T𝐩. 

(C6)  

We substitute Eq.(C2) into Eq.(C1) and multiply it (from the left) by 𝐁T. We obtain 

 
𝐊̃𝐮̃ + 𝐂̃𝐮̇̃ + 𝐌̃𝐮̈̃ = 𝐩, 

(C7)  

 
𝐊̃ = 𝐁T𝐊𝐁, 𝐌̃ = 𝐁T𝐌𝐁,        𝐂̃ = 𝐁T𝐂𝐁 

(C8)  

are the reduced stiffness, mass and damping matrices, respectively. 

We may observe that for certain 𝐩 loads 𝐁T𝐩 = 𝟎, which means that this load does not affect the motion 

of the structure. 

For the calculation of the multi-block cantilever each rigid block was represented by three mass points, 

which can accurately replace the mass, center of gravity and moment of inertia of a rigid body. Hence the 

original (Eq.(C1)) system has 𝑛 = 2 × 3 × 𝑛b equations, while the reduced one only 𝑚 = 𝑛b. The B 

matrix was determined from geometrical considerations for arbitrary positions (Fig. C1) not only for the 

initial (straight) configuration. 
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Fig. C1 The reduction of the degrees of freedom of the structure 

The above procedure is illustrated below. Two blocks are placed on the top of each other in the initial 

(vertical) position (Fig. C2a). The sizes of each block are 1 by 4 meters and their mass is 1 kg. The mass 

of a block is concentrated at three nodal points, for this specific case their values are 0.177, 0.646 and 

0.177 kg. Due to the 6 nodal points there are 12 degrees of freedom, the first six are the horizontal (x) 

displacement relative to the ground, and the last six are the vertical (y) displacements. The mass matrix is 

diagonal: 

 
𝐌 = 〈0.177 0.646 0.177 0.177 0.646 0.177 0.177 0.646 0.177 0.177 0.646 0.177〉. 

(C9)  

When the horizontal ground acceleration is -1 m/s2 and the acceleration of gravity is 9.81 m/s2, the load 

vector is: 

 
𝐩 =

{
 
 
 
 
 

 
 
 
 
 
0.177
0.646
0.177
0.177
0.646
0.177
−1.74
−6.34
−1.74
−1.74
−6.34
−1.74}

 
 
 
 
 

 
 
 
 
 

 [N]. 
(C10)  

The first six elements are the horizontal, and the last six are the vertical components. The relationship 

between the nodal displacements and the rotations at the two interfaces (assuming small displacements) 

are (Eq.C2): 

 
𝐮 =

{
 
 
 
 
 

 
 
 
 
 
𝑢𝑥1
𝑢𝑥2
𝑢𝑥3
𝑢𝑥4
𝑢𝑥5
𝑢𝑥6
𝑢𝑦1
𝑢𝑦2
𝑢𝑦3
𝑢𝑦4
𝑢𝑦5
𝑢𝑦6}

 
 
 
 
 

 
 
 
 
 

= 𝐁𝐮̃ =

[
 
 
 
 
 
 
 
 
 
 
 
0 0

−2.0 0
−4.0 0
−4.0 0
−6.0 −2.0
−8.0 −4.0
−0.5 0
−0.5 0
−0.5 0
−0.5 −0.5
−0.5 −0.5
−0.5 −0.5]

 
 
 
 
 
 
 
 
 
 
 

⏟        
𝐁

{
𝑢̃1
𝑢̃2
}, (C11)  
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where the 12x2 matrix is identical to B. Its transpose, BT is used to determine the new load 

vector (Eq.C6): 

 
𝐩 = 𝐁T𝐩 = {

1.810
2.905

} [Nm]. 
(C12)  

These are the moment couples at the axes of rotations (see Fig. C2a). (For the upper axis -

1×2+9.81×0.5=2.905 Nm.) The mass matrix of the reduced system is (Eq.C8): 

 
𝐌̃ = 𝐁T𝐌̃𝐁 = [

43.333 13.667
13.667 5.667

] . 
(C13)  

Now we investigate the case, when the upper block has an inclination of 10 degrees (Fig. C2b). The mass 

matrix and the load vector for the nodal points are identical to Eq.(C9) and (C10). The elements of the B 

matrix must be changed due to the new geometry: 

 
𝐮 =

{
 
 
 
 
 

 
 
 
 
 
𝑢1𝑥
𝑢2𝑥
𝑢3𝑥
𝑢4𝑥
𝑢5𝑥
𝑢6𝑥
𝑢1𝑦
𝑢2𝑦
𝑢3𝑦
𝑢4𝑦
𝑢5𝑦
𝑢6𝑦}

 
 
 
 
 

 
 
 
 
 

= 𝐁𝐮̃ =

[
 
 
 
 
 
 
 
 
 
 
 

0 0
−2.0 0
−4.0 0
−4.087 −0.087
−6.056 −2.056
−8.026 −4.026
−0.5 0
−0.5 0
−0.5 0
−0.492 −0.492
−0.145 −0.145
0.202 0.202 ]

 
 
 
 
 
 
 
 
 
 
 

{
𝑢̃1
𝑢̃2
}, 

(C14)  

and hence, the load vector and the mass matrix of the reduced system are also changed: 

 
𝐩 = {

−1.728
−0.633

} [Nm], 
(C15)  

 
𝐌̃ = [

43.785 13.892
13.892 5.667

] . 
(C16)  

 

Fig. C2 Nodal points of a two block structure and the corresponding angular rotations and moment couples 

(positive if counterclockwise) 
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